Answer: d= 0.57* l
Explanation:
We need to check that before ladder slips the length of ladder the painter can climb.
So we need to satisfy the equilibrium conditions.
So for ∑Fx=0, ∑Fy=0 and ∑M=0
We have,
At the base of ladder, two components N₁ acting vertical and f₁ acting horizontal
At the top of ladder, N₂ acting horizontal
And Between somewhere we have the weight of painter acting downward equal to= mg
So, we have N₁=mg
and also mg*d*cosФ= N₂*l*sin∅
So,
d=
* tan∅
Also, we have f₁=N₂
As f₁= чN₁
So f₁= 0.357 * 69.1 * 9.8
f₁= 241.75
Putting in d equation, we have
d=
* tan 58
d= 0.57* l
So painter can be along the 57% of length before the ladder begins to slip
Answer:
a) 
b) 
Explanation:
Given:
- initial rotational speed of phonograph,

- final rotational speed of phonograph,

- time taken for the acceleration,

a)
Now angular acceleration:



b)
Using eq. of motion:



Answer:
upward force acting = 261.6 N
Explanation:
given,
mass of gibbon = 9.4 kg
arm length = 0.6 m
speed of the swing
net force must provide

force of gravity = - mg

= 
= 
=9 x 29.067
= 261.6 N
upward force acting = 261.6 N
Answer:
More than enough solar energy (8.2 million quad BTUs, 1 quad = 2.9 x1011 kWh) hits Earth's surface each year to meet all of societies' needs. Currently we use about 400 quads per year to run our society. Good building design allows passive use of sunlight to heat homes. Simple solar collectors are used to heat water and cook food. As useful as it is for these purposes, thermal energy from sunlight is still a low quality energy compared to electricity. Computers, most machinery, light bulbs, subway trains, and much more all require electricity. It is possible to turn thermal energy from the sun into electricity. In this unit we will examine how.
. We will also examine how to make electricity directly from light using the photovoltaic cells.