<h2>
Option 2 is the correct answer.</h2>
Explanation:
Elastic collision means kinetic energy and momentum are conserved.
Let the mass of object be m and M.
Initial velocity object 1 be u₁, object 2 be u₂
Final velocity object 1 be v₁, object 2 be v₂
Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s
Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M
Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J
Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M
We have
Initial momentum = Final momentum
24 = 3v₁ + 6M
v₁ + 2M = 8
v₁ = 8 - 2M
Initial kinetic energy = Final kinetic energy
96 = 1.5 v₁² + 18 M
v₁² + 12 M = 64
Substituting v₁ = 8 - 2M
(8 - 2M)² + 12 M = 64
64 - 32M + 4M² + 12 M = 64
4M² = 20 M
M = 5 kg
Option 2 is the correct answer.
Answer:
<em> The elastic potential energy stored in the bungee cord = 20 J</em>
Explanation:
potential energy: This is the energy possessed by a body due to its position. The S.I unit of energy is Joules. The mathematical expression for elastic potential energy is given below
E = 1/2ke²................ Equation 1
Where E = elastic potential energy of the spring, k = force constant of the spring, e = extension
<em>Given: K = 10 N/m, e = 2.00 m</em>
<em>Substituting these values into Equation 1</em>
<em>E = 1/2(10)(2)²</em>
<em>E = 5×4</em>
<em>E = 20 Joules.</em>
<em>Therefore the elastic potential energy stored in the bungee cord = 20 J</em>
<em></em>
When the truck accelerates forward the ball will shift to the back of the bed of the truck because of inertia
Answer:
A: All of the above
Explanation:
The instantaneous speed of an object is simply the current seed of the object at any given time. The SI unit is m/S and it is a vector quantity.
Therefore, according to the given options, they all have SI units that are consistent with distance and time which makes them all an example of instantaneous speed.
This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height. ... When air resistance plays a role, the shape of the object becomes important. In air, a feather and a ball do not fall at the same rate.