1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
1 year ago
13

A proton is held at rest in a uniform electric field. When it is released, the proton will lose?

Physics
1 answer:
nydimaria [60]1 year ago
5 0

A proton is held at rest in a uniform electric field. When it is released, the proton will lose its kinetic energy.

Kinetic energy

The energy an object has as a result of motion is known as kinetic energy in physics. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes. The body exerts the same amount of effort when slowing down from its current pace to a condition of rest. Formally, kinetic energy is any term that includes a derivative with respect to time in the Lagrangian of a system.

To learn more about kinetic energy refer here:

brainly.com/question/11301578

#SPJ4

You might be interested in
Which of the following quantities is inversely proportional to the gravitational pull between two objects?
Contact [7]

Answer:

C

Explanation:

Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces

I hope this helps a little bit

7 0
3 years ago
Read 2 more answers
Why do planets speed up as they get closer to the sun?:
Serggg [28]

Answer:

C

Explanation:

Gravity is the main reason that make our planets to pull each other

5 0
2 years ago
A ball is thrown nearly vertically upward from a point near the cornice of a tall building. It just misses the cornice on the wa
vovangra [49]

Answer:

a) 48.5 ft/s

b) 36.5 ft

c) -80.3 ft/s

Explanation:

a)

The equation of motion of the ball is :

y(t) = -16.1 ft/s^2 * t^2 + Vo*t

Where Vo is the initial velocity

If y(5s) = - 160 ft:

-160 ft = -16.1 ft/s^2 * (5 s)^2 + Vo*(5s)

Solving for Vo

Vo  = (16.1*25- 160) ft / 5s = 48.5 ft/s

b)

To answer this question we must first know when the velocity became zero, at this time is when the ball was at its highest point.

v(t) = -32.2 ft/s^2 * t + Vo

t = Vo/32.2ft/s^2 = 1.5 s

And now, the highest point which the ball reached is given by:

y(1.5s) = -16.1 ft/s^2 * (1.5)^2 + Vo*(1.5s)

y(1.5s) = 36.52 ft

c)

We now need the time at which y(t') = -64 ft

-64 = -16.1*t'^2 + 48.5*t'

By means of the quadratic formula, we find that

t' = 4.00498 s ≈ 4 s

And the velocity at t = 4s is:

v(4s) = -32.2 ft/s^2 * 4s +48.5 ft/s = -80.3 ft/s

3 0
3 years ago
Tarik winds a small paper tube uniformly with 183 turns 183 turns of thin wire to form a solenoid. The tube's diameter is 9.49 m
Rufina [12.5K]
<h2>Answer:</h2>

143μH

<h2>Explanation:</h2>

The inductance (L) of a coil wire (e.g solenoid) is given by;

L = μ₀N²A / l                 --------------(i)

Where;

l = the length of the solenoid

A = cross-sectional area of the solenoid

N= number of turns of the solenoid

μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²

<em>From the question;</em>

N = 183 turns

l = 2.09cm = 0.0209m

diameter, d = 9.49mm = 0.00949m

<em>But;</em>

A = π d² / 4                     [Take π = 3.142 and substitute d = 0.00949m]

A = 3.142 x 0.00949² / 4

A = 7.1 x 10⁻⁵m²

<em>Substitute these values into equation (i) as follows;</em>

L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209           [Take π = 3.142]

L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209

L = 143 x 10⁻⁶ H

L = 143 μH

Therefore the inductance in microhenrys of the Tarik's solenoid is 143

6 0
3 years ago
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have st
irina [24]

Complete Question:

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups, 31 {\rm {N}/{mm}}. What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answer:

\triangle E = 12.79 J

Explanation:

Sprinters' tendons stretch, x_s = 43 mm = 0.043 m

Non athletes' stretch, x_n = 32 mm = 0.032 m

Spring constant for the two groups, k = 31 N/mm = 3100 N/m

Maximum Energy stored in the sprinter, E_s = 0.5kx_s^2

Maximum energy stored in the non athletes, E_m = 0.5kx_n^2

Difference in maximum stored energy between the sprinters and the non-athlethes:

\triangle E = E_s - E_n = 0.5k(x_s^2 - x_n^2)\\\triangle E = 0.5*3100* (0.043^2 - 0.032^2)\\\triangle E = 0.5*31000*0.000825\\\triangle E = 12.79 J

4 0
3 years ago
Other questions:
  • You throw a rock horizontally off a cliff with a speed of 20 m/s. after two seconds, the magnitude of the velocity of the rock i
    5·1 answer
  • What is it called cavity left behind in the rock after an organism's hard part has dissolved.
    11·1 answer
  • A resistor and a capacitor are connected in series across an ideal battery having a constant voltage across its terminals. Long
    11·1 answer
  • Suppose a 50 turn coil lies in the plane of the page in a uniform magnetic field that is directed into the page. The coil origin
    6·1 answer
  • A motorcycle is traveling up one side of a hill and down the other side. The crest of the hill is a circular arc with a radius o
    14·1 answer
  • The towel has better blank
    12·1 answer
  • A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ
    13·1 answer
  • How does inertia explain why it is difficult to stop a moving<br> skateboard?
    10·1 answer
  • Which of the following is true of work?
    5·1 answer
  • A car of mass 900 Kg is moving with a velocity of 10 m/s. It is brought to rest at 25 m distance by applying the brakes. Calcula
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!