Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
Hi there!
Great question!
Basketballs have air inside them. A special pump is used to insert the air. That's why you can lift the basketballs off the ground easily. If it was a solid, though, you'd hardly be able to lift the ball up! Basketballs can float, too, because anything with air inside can float. If it were solid, it would sink in the water easily.
Hope this helps! :D
Answer:
Option D) 4A
Explanation:
As the cycle of the wave passes by, the amplitude gives the longest journey when the spot travels from the undistributed position. During each cycle the spot travels "Four times" .
Considering one of this cycle, if it begins to travel from it's undistributed position , there would be four movements i.e
* Upward movement through distance A
*Downward movement through distance A
*Downward again through distance A
*Upward through distance A.
Then it would travel back to its undistributed position held
Answer:
8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.
Explanation:
The total charge accumulated in 1.8 hours will be:
Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)
Total Charge = - 12960 nC = - 12.96 x 10^(-6) C
Since, the charge on one electron is e = - 1.6 x 10^(-19) C
Therefore, no. of electrons will be:
No. of electrons = Total Charge/Charge on one electron
No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]
<u>No. of electrons = 8.1 x 10^13 electrons</u>
Answer:
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
Explanation:
Let A be the area of the capacitor plate
The capacitance of a capacitor is given as;

where;
V is the potential difference between the plates
The charge on the plates is given as;

The energy stored in the capacitor is given as;

Thus, the physical variables listed that will change include;
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor