Answer:
E₁ = 1.042 eV
E₄₋₃= 7.29 eV
E₄₋₂= 12.50 eV
E₄₋₁= 15.63 eV
E₃₋₂= 5.21eV
E₃₋₁= 8.34eV
E₂₋₁= 3.13eV
Explanation:
The energy in an infinite square-well potential is giving by:
<em>where, h: Planck constant = 6.62x10⁻³⁴J.s, n: is the energy state, m: mass of the electron and L: widht of the square-well potential </em>
<u>The energy of the electron in the ground state, </u><u>n = 1</u><u>, is: </u>
The photon energies that are emitted as the electron jumps to the ground state is the difference between the states:





Have a nice day!
<span>The flying bully is a move used in the Superhero Movie "Hancock", it is not a real motion in our universe. However, the direction would be towards the target object and the acceleration would be maximal.</span>
Answer:
d=510.2m
t=10.2s
Explanation:
The formulas for accelerated motion are:

From them we can get
.
We have:

And substitute:

We multiply both sides by 2a, and continue:

Being d the displacement
, we have 
For our exercise, we will write this as:

And taking upwards direction positive and imposing final velocity 0m/s (for maximum height), we have:

For the time we use:

Answer:

Explanation:
We apply Newton's second law at the crate :
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
m=90kg : crate mass
F= 282 N
μk =0.351 :coefficient of kinetic friction
g = 9.8 m/s² : acceleration due to gravity
Crate weight (W)
W= m*g
W= 90kg*9.8 m/s²
W= 882 N
Friction force : Ff
Ff= μk*N Formula (2)
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W = 0
N = W
N = 882 N
We replace the data in the formula (2)
Ff= μk*N = 0.351* 882 N
Ff= 309.58 N
We apply the formula (1) in x direction:
∑Fx = m*ax , ax=0
282 N - 309.58 N = 90*a
a= (282 N - 309.58 N ) / (90)
a= - 0.306 m/s²
Kinematics of the crate
Because the crate moves with uniformly accelerated movement we apply the following formula :
vf²=v₀²+2*a*d Formula (3)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
v₀ = 0.850 m/s
d = 0.75 m
a= - 0.306 m/s²
We replace the data in the formula (3)
vf²=(0.850)²+(2)( - 0.306 )(0.75 )


In my opinion I would say all of the above; because people's job depends on where they live or how their environment is. The way they travel is also affected because we can't travel by car through water and can't use a boat in land. Free time as well because people like to travel and or just stay at home depending on the weather which is part of earths features.