25,000 Feet = 7620m
PE = mgh where m is mass, g is gravity accel: 9.8 n h is height
= 90 x 9.8 x 7620
= 6720840J
= 6.72MJ
F = ma where m is mass, a is accel = gravity = 9.8
= 90 x 9.8
= 882N
Accel = gravity = 9.8m/s^2
KE = 1/2mv^2 where m is mass n v is vel
if no wind resistance, PE leaving airplane = KE at net
6720840 = 1/2 x 90 x v^2
v^2 = 149352
v = 386.5m/s
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
The first one would be frequency. Here’s what I found to support that “The number of waves passing a fixed point in a certain amount of time is called the The word frequent means “often,” so frequency measures how often a wave occurs. Frequency is often measured by counting the number of crests or troughs that pass by a given point in one second”
The second one would be a medium “Mechanical waves require a medium in order to transport their energy from one location to another. “
Answer:
<h3>The answer is 3 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>3 kg</h3>
Hope this helps you
B is the answer to your question