Covalent bonds or interactions are overcome when a nonmetal extended network melts.
Typically, nonmetals form covalent bonds with one another. A polyatomic ion's atoms are joined by a form of link called covalent bonding. A covalent bond requires two electrons, one from each of the two atoms that are connecting.
One technique to depict the formation of covalent connections between atoms is with Lewis dot formations. The number of unpaired electrons and the number of bonds that can be formed by each element are typically identical. Each element needs to share an unpaired electron in order to establish a covalent bond.
Therefore, covalent bonds or interactions are overcome when a nonmetal extended network melts.
Learn more about covalent bonds here;
brainly.com/question/10777799
#SPJ4
Hey there!
C₅H₅ + Fe → Fe(C₅H₅)₂
Put a coefficient of 2 in front of C₅H₅ on the left side because there is a subscript of 2 after C₅H₅ in parenthesis on the right.
2C₅H₅ + Fe → Fe(C₅H₅)₂
Fe (iron) is already balanced since there is one on each side, so we don't need to change anything for that.
This is a synthesis reaction because two reactants, C₅H₅ and Fe, are yielding a single product, Fe(C₅H₅)₂.
Hope this helps!
The balanced chemical reaction:
<span>Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
</span>
We are given the amount of the reactants to be used for the reaction. These values will be the starting point of our calculations.
9.85 g Cu ( 1 mol Cu / 63.55 g Cu ) = 0.15 mol Cu
31.0 g AgNO3 ( 1 mol AgNO3 / 169.87 g AgNO3 ) = 0.18 mol AgNO3
The limiting reactant is AgNO3.
0.18 mol AgNO3 ( 1 mol Cu(NO3)2 / 2 mol AgNO3 ) (187.56 g / 1 mol) =16.88 g Cu(NO3)2
0.15 mol Cu - 0.18 mol AgNO3 ( 1 mol Cu / 2 mol AgNo3) = 0.06 mol Cu excess
<span>0.06 mol Cu ( 63.55 g Cu / 1 mol Cu ) = 3.81 g Cu excess</span>
Synthetic rubber also has shortcomings, the main drawback exists in its tensile effect is relatively poor, tear strength and mechanical properties are relatively poor
Answer:
The Periodic Table is organized in order of atomic number.
Explanation:
Plz give me brainliest I worked hard on this... thank u in advance.