No 1+1 does not equal fish.....I thought so too until I looked it up
Answer:
![y = \frac{1}{8} x - 2 \frac{1}{4}](https://tex.z-dn.net/?f=y%20%3D%20%20%5Cfrac%7B1%7D%7B8%7D%20x%20-%202%20%20%5Cfrac%7B1%7D%7B4%7D%20)
Step-by-step explanation:
<u>Slope-intercept </u><u>form</u>
y= mx +c, where m is the slope and c is the y-intercept
Line p: y= -8x +6
slope= -8
The product of the slopes of perpendicular lines is -1. Let the slope of line q be m.
m(-8)= -1
m= -1 ÷(-8)
m= ⅛
Substitute m= ⅛ into the equation:
y= ⅛x +c
To find the value of c, substitute a pair of coordinates that the line passes through into the equation.
When x= 2, y= -2,
-2= ⅛(2) +c
![- 2 = \frac{1}{4} + c](https://tex.z-dn.net/?f=%20-%202%20%3D%20%20%5Cfrac%7B1%7D%7B4%7D%20%20%2B%20c)
![c = - 2 - \frac{1}{4}](https://tex.z-dn.net/?f=c%20%3D%20%20-%202%20-%20%20%5Cfrac%7B1%7D%7B4%7D%20)
![c = - 2 \frac{1}{4}](https://tex.z-dn.net/?f=c%20%3D%20%20-%202%20%5Cfrac%7B1%7D%7B4%7D%20)
Thus, the equation of line q is
.
Answer:
102
Step-by-step explanation:
i guess