Answer:- 14.9 M
Solution:- Given commercial sample of ammonia is 28% by mass. Let's say we have 100 grams of the sample. Then mass of ammonia would be 28 grams.
Density of the solution is given as 0.90 grams per mL.
From the mass and density we could calculate the volume of the solution as:

= 111 mL
Let's convert the volume from mL to L as molarity is moles of solute per liter of solution.
= 0.111 L
Now, we convert grams of ammonia to moles on dividing the grams by molar mass. Molar mass of ammonia is 17 gram per mole.

= 1.65 mole
To calculate the molarity we divide the moles of ammonia by the liters of solution:

= 14.9 M
So, the molarity of the given commercial sample of ammonia is 14.9 M.
<span>The metal that would more easily lose an electron would be potassium. It is more reactive than sodium. Also, looking on the periodic table, </span><span>from top to bottom for groups 1 and 2, reactivity increases. So, it should be potassium. Hope this answers the question. Have a nice day.</span>
Answer:
Yes, water can stay liquid below zero degrees Celsius. There are a few ways in which this can happen. The freezing point of water drops below zero degrees Celsius as you apply pressure. When we apply pressure to a liquid, we force the molecules to get closer together.
Explanation:
Hope this helps you. Have a nice day.^_^
Please mark as brainliest. It helps a lot:)
4. The pressure of the inner core is higher than the outer core
5. The coolest layers are farthest from the core