1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
12

Name three types of electromagnetic radiation that can travel through empty space

Physics
1 answer:
MAVERICK [17]3 years ago
6 0

ALL electromagnetic radiation can travel through empty space.
A few examples are:

-- radio
-- heat
-- visible light
-- ultraviolet
-- X-rays

You might be interested in
For the PE formula, why is the height required for calculations? Why do we need to know the height in order to determine PE? *
Fudgin [204]

Answer:

Answer in Explanation

Explanation:

Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>

The derivation of this formula is as follows:

Work = Force * Displacement

For gravitational potential energy:

Work = P.E

Force = Weight = mg

Displacement = Vertical Displacement = Height = h

Therefore,

P.E = mgh

5 0
2 years ago
A sports car traveling at 24.7 m/s slows at a constant rate to a stop in 16.00 s. What is the displacement of the sports car in
maw [93]

Explanation:

Displacement=Velocity×time

=24.7×16.00

=395.2m

Therefore the displacement within the time interval is 395.2m

5 0
2 years ago
At what distance from Earth does the force of gravity exerted by Earth on the coasting spacecraft cancel the force of gravity ex
telo118 [61]

Answer:

346 * 10⁶ m

Explanation:

The force of gravity of the earth that will cancel the the force of gravity exerted by the moon will be equal to each other

Let F_{e} be the force of gravity exerted by the earth

and let F_{m} be the force of gravity exerted by the moon

According to Newton's law of universal gravitation, the force of attraction between two different masses, m₁ and m₂ separated by a distance, d,  is given by:

F = \frac{Gm_{1} m_{2} }{d^{2} }

Mass of the earth, m_{e} = 5.97 * 10^{24} kg

Mass of the moon, m_{m} = 7.348 * 10^{22} kg

Mass of the satellite, m_{s} = ?

F_{e}  = \frac{G*5.97 * 10^{24} M }{d^{2} }...............................(1)

The earth and the moon are separated by a distance, 3.844 * 10⁸ m

F_{m}  = \frac{G*7.348 * 10^{22} M }{(3.844 * 10^{8} - d) ^{2} }............................(2)

Equating equations (1) and (2)

\frac{5.97 * 10^{24} }{d^{2} } = \frac{7.348 * 10^{24} }{(3.844* 10^{8} -d)^{2} }

(5.97 * 10^{24})(14.78 * 10^{16}  -7.688*10^{8}d + d^{2}) = 7.348 * 10^{24} d^{2} \\88.24*10^{40} - 45.9 * 10^{32}d +  5.97 * 10^{24}d^{2} =  7.348 * 10^{24} d^{2}\\ 1.378 * 10^{24}d^{2} + 45.9 * 10^{32}d + 88.24*10^{40} = 0\\

Factorising out 10^{24}

1.378d^{2} + 45.9 * 10^{8}d + 88.24*10^{16} = 0

Solving for d in the quadratic equation  above:

d = 346 * 10⁶ m

4 0
3 years ago
A 10-cm-long thin glass rod uniformly charged to 8.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 8.00 nCnC ar
ch4aika [34]

Complete Question

A 10-cm-long thin glass rod uniformly charged to 8.00 nC and a 10-cm

long thin plastic rod uniformly charged to -8.00 nC are placed side by

side, 4.20 cm apart. What are the electric field strengths E_1 to E_3 at

distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line

connecting the midpoints of the two rods

a.) Specify the electric field strength E1

b.) Specify the electric field strength E2

c.) Specify the electric field strength E3

Answer:

              E_1=7.13*10^5 N/C

             E_2= 2.95*10^{5} N/C

              E_3= 3.84*10^5 N/C

Explanation:

  From the question we are told that

          The length of the thin glass is  L = 10 cm

          The  charge on the glass rod is  q_g = 8.00nC = 8* 10^{-9} C

           The length of the plastic rod is  L_p = 10cm

             The charge on the  plastic rod is q_p =- 8.00nC = -8.0*10^{-9}C

           The distance between the materials  is d = 4.20cm = \frac{4.2}{100} =0.042m

          The various distances to obtain electric field of are r_1 = 1.0cm

                                                                                                r_2 = 2.0cm

                                                                                                 r_3 = 3.0cm

The objective of the solution is to obtain the electric field E_1 , E_2 \ and E_3 at distance d_1 , d_2 \ and \ d_3  from the glass rod  along the line connecting its mid point  

   Generally electric field of a charge rod at a distance of r the line dividing the rod  into half  is mathematically represented as

                              E = k \frac{2Q}{r\sqrt{L^2 + 4r^2} }

For the  r_2 = 1.0cm = \frac{1}{100} = 0.01m

The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r \sqrt{L^2 + 4r^2_1} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_1) \sqrt{L^2 + 4r^2_1} }

The net electric field is,

            E_{net} =E_1= E_l + E_r

                    = k \frac{2Q}{r_1\sqrt{L^2 + 4 r^2_1 } } + k \frac{2Q}{(0.04-r_1) \sqrt{L^2 + 4 (0.044 -r_1)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.01)\sqrt{(0.01^2 + 4(0.01)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.01)\sqrt{(0.01)^2 + (4) (0.042 - 0.01)^2} }

                           = 6.44*10^5 + 6.9*10^4

                           E_1=7.13*10^5 N/C

For the  r_2 = 2.0cm = \frac{2}{100} = 0.02m

           The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r_2 \sqrt{L^2 + 4r^2_2} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_2) \sqrt{L^2 + 4r^2_2} }

The net electric field is,

            E_{net} =E_2= E_l + E_r

                    = k \frac{2Q}{r_2\sqrt{L^2 + 4 r^2_2 } } + k \frac{2Q}{(0.04-r_2) \sqrt{L^2 + 4 (0.044 -r_2)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.02)\sqrt{(0.02^2 + 4(0.02)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.02)\sqrt{(0.02)^2 + (4) (0.042 - 0.02)^2} }

            = 1.6*10^{5}+ 1.3*10^{5}

             E_2= 2.95*10^{5} N/C

For the  r_3 = 3.0cm = \frac{3}{100} = 0.03m

           The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r_3 \sqrt{L^2 + 4r^2_3} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_3) \sqrt{L^2 + 4r^2_3} }

The net electric field is,

            E_{net} =E_3= E_l + E_r

                    = k \frac{2Q}{r_3\sqrt{L^2 + 4 r^2_3 } } + k \frac{2Q}{(0.04-r_3) \sqrt{L^2 + 4 (0.044 -r_3)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.03)\sqrt{(0.03^2 + 4(0.03)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.03)\sqrt{(0.03)^2 + (4) (0.042 - 0.03)^2} }

        = 7.2 *10^{4} + 3.1*10^5

      E_3= 3.84*10^5 N/C                

8 0
2 years ago
The distance between Pluto and the Sun is 39.1 times more than the distance between the Sun and Earth. Calculate the time taken
german

Answer:

Explanation:

Given

Distance between Pluto and sun is 39.1 times more than the distance between earth and sun

According to Kepler's Law

T^2=kR^3

where k=constant

T=time period

R=Radius of orbit

Suppose R_1 is the radius of orbit of earth and sun

so Distance between Pluto and sun is R_2=39.1\cdot R_1

T_1 and T_2 is the time period corresponding to R_1 and R_2[/tex]

(T_1)^2=k(R_1)^3---1

(T_2)^2=k(R_2)^3---2

divide 1 and 2

(\frac{365}{T_2})^2=(\frac{R_1}{39.1})^3

T_2^2=365^2\times 39.1^3

T_2=89239.67\ Earth\ days                      

7 0
2 years ago
Other questions:
  • The direction you are traveling and the speed at which you travel
    12·1 answer
  • HELPP PLEASEEE Which issue is not a challenge an organism encounters?
    12·2 answers
  • A transverse wave on a long horizontal rope with a
    6·1 answer
  • Assume you are given an int variable named nElements and a two-dimensional array that has been created and assigned to a2d. Writ
    11·1 answer
  • The law of conservation of matter states that during a chemical reaction
    15·1 answer
  • "For punishment to work (i.e., to weaken the frequency of undesirable behaviors without creating a backlash), the punishment mus
    15·1 answer
  • Which of the following has the greatest inertia ?
    11·1 answer
  • When a reaction that occurs when a person experiences very strong emotion especially those associated with a perceived threat is
    15·1 answer
  • What is a measure of the total ground covered?
    15·1 answer
  • Which of the following is the best definition of impulse?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!