1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
3 years ago
14

A water tank has a square base of area 8 square meters. Initially the tank contains 70 cubic meters. Water leaves the tank, star

ting at t=0, at the rate of 2 + 4 t cubic meters per hour. Here t is the time in hours. What is the depth of water remaining in the tank after 3 hours?
Physics
1 answer:
OLEGan [10]3 years ago
8 0

Answer:

Explanation:

Given

base of water tank A=8\ m^2

Initial volume of water V=70\ m^3

Water leaves the tank at the rate of

\frac{\mathrm{d} V}{\mathrm{d} t}=-(2+4t^3)

Integrating rate to get desired volume

at t=0,V=70\ m^3

at t=3\ hr,V=V

therefore

\int_{70}^{V}dV=\int_{0}^{3}-\left ( 2+4t\right )dt

V-70=2t+2t^2|_0^3

V-70=-24

V=46\ m^3

and volume=Area\times h

h=\frac{V}{A}

h=\frac{46}{8}

h=5.75\ m

Thus height of water remaining is 5.75\ m      

You might be interested in
The acceleration due to gravity, g , is constant at sea level on the Earth's surface. However, the acceleration decreases as an
blsea [12.9K]

Answer:

  g    = g₀   [1- 2 h / Re + 3 (h / Re)²]

Explanation:

The law of universal gravitation is

        F = G m Me / Re²

Where g is the universal gravitational constant, m and Me are the mass of the body and the Earth, respectively and R is the distance between them

      F = G Me /Re²  m

We call gravity acceleration a

       g₀ = G Me / Re².

When the body is at a height h above the surface the distance is

            R = Re + h

Therefore  the attractive force is

      F = G Me m / (Re + h)²

Let's take Re's common factor

      F = G Me / Re²  m / (1+ h / Re)²

As Re has a value of 6.37 10⁶ m and the height of the body in general is less than 10⁴ m, the h / Re term is very small, so we can perform a series expansion

         (1+ h / Re)⁻² = 1 -2 h / Re + 6/2 (h / Re) 2 + ...

Let's replace

       F = G Me /Re²   m [1- 2 h / Re + 3 (h / Re)²]

       F = g₀   m  [1- 2 h / Re + 3 (h / Re)²]

If we call the force of attraction at height

     m g =g₀ m  [1- 2 h / Re + 3 (h / Re)²]

       g    = g₀   [1- 2 h / Re + 3 (h / Re)²]

3 0
3 years ago
In which one of the following situations is zero net work done? A) A ball rolls down an inclined plane. B) A physics student str
lidiya [134]

Answer:

Option D

Explanation:

The work done can be given by the mechanical energy used to do work, i.e., Kinetic energy and potential energy provided to do the work.

In all the cases, except option D, the energy provided to do the useful work is not zero and hence work done is not zero.  

In option D, the box is being pulled with constant velocity, making the acceleration zero and thus Kinetic energy of the system is zero. Hence work done in this case is zero.

6 0
3 years ago
Read 2 more answers
Two spheres A and B are projected off the edge of a 1.0 m high table with the same horizontal velocity . sphere A has a mass of
olga2289 [7]

Answer:

c. because A will land first becuase its heavier :)

Explanation:

8 0
3 years ago
Air enters a turbine operating at steady state at 8 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinet
kobusy [5.1K]

Answer:

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

Explanation:

To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables

Mathematically this can be determined as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}

Where

Temperature at inlet of turbine

Temperature at exit of turbine

Pressure at exit of turbine

Pressure at exit of turbine

The steady flow Energy equation for an open system is given as follows:

m_i = m_0 = mm(h_i+\frac{V_i^2}{2}+gZ_i)+Q = m(h_0+\frac{V_0^2}{2}+gZ_0)+W

Where,

m = mass

m(i) = mass at inlet

m(o)= Mass at outlet

h(i)= Enthalpy at inlet

h(o)= Enthalpy at outlet

W = Work done

Q = Heat transferred

v(i) = Velocity at inlet

v(o)= Velocity at outlet

Z(i)= Height at inlet

Z(o)= Height at outlet

For the insulated system with neglecting kinetic and potential energy effects

h_i = h_0 + WW = h_i -h_0

Using the relation T-P we can find the final temperature:

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}\\

\frac{T_2}{1600K} = (\frac{0.8bar}{8nar})^{(\frac{1.4-1}{1.4})}\\ = 828.716K

From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

W = h_i -h_0W = C_p (T_1-T_2)W = 1.005(1600 - 828.716)W = 775.140kJ/Kg

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

4 0
3 years ago
Adita lifts a book from the floor, carries it across the room, and places it on a high shelf. When is Adita doing work on the bo
noname [10]

She does work from the moment she touches the book until she lets it go. Work is anything that requires energy. Therefore, she is working as she picks up the book, carries it, and when she is lifting it onto the shelf.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A bowling ball of mass 5.8 kg moves in a
    14·1 answer
  • A weightlifter lifts a 250-kg mass 0.5 meters above his head, how much PEg does the mass have (Note: g=9.8 m/s2)? Round your ans
    14·2 answers
  • An x-ray photon is scattered by an originally stationary electron. how does the frequency of the scattered photon compare relati
    7·1 answer
  • What is matter? Give a grade 10/11/12 understanding.
    14·1 answer
  • (a) If the position of a chlorine ion in a membrane is measured to an accuracy of 5.00 µm, what is its minimum uncertainty in ve
    15·1 answer
  • You are driving home from school steadily at 95 km/h fro 130 km. It begins to rainand you slow to 65 km/h. You arrive home after
    7·1 answer
  • Regardless of their frequency, wavelength, or energy, all electromagnetic waves: A. travel only through the vacuum of space. B.
    5·1 answer
  • A boy in a wheelchair (total mass 56.5 kg) has speed 1.40 m/s at the crest of a slope 2.05 m high and 12.4 m long. At the bottom
    6·1 answer
  • If there is 3.4 m3 of methane gas in a container with a pressure of 18.9 atm and the container expands until the methane has a p
    5·1 answer
  • Explain some of the things that you like to do, but could not if you did not have any thumbs.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!