Answer:
Distance= 2.3864m
Explanation:
So that the balance is in equilibrium parallel to the floor, we must match the moment each man makes with respect to the pivot point.
In many cases the point of application of force does not coincide with the point of application in the body. In this case the force acts on the object and its structure at a certain distance, by means of an element that transfers that action of this force to the object.
This combination of force applied by the distance to the point of the structure where it is applied is called the moment of force F with respect to the point. The moment will attempt a rotation shift or rotation of the object. The distance from the force to the point of application is called the arm.
Mathematically it is calculated by expression:
M= F×d
The moment caused by the first man is:
M1= 75kg × (9.81m/s²) × 1.75m= 1287.5625 N×m
The moment caused by the second man must be equal to that caused by the first by which:
M2= 1287.5625 N×m= 55kg × (9.81m/s²) × distance ⇒
⇒distance= (1287.5625 N×m)/( (55kg × (9.81m/s²) )= 2.3864m
At this distance from the pivot point, the second should sit down so that the balance is balanced parallel to the ground.
Newton's first law of motion is that an object in motion will tend to stay in motion unless an external force acts upon it.
kinetic is moving
so kinetic energy is something that moves
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
Answer:wave travel
Explanation:Because gravity pulls the water in the crest downward .Forced out from beneath the falling crests ,the falling water pushes former troughs upwards and the wave moves to a new position causing a disturbance.