Answer:
2,352 Joules
Explanation:
At the ground, the barbell has a classical mechanical energy value of zero. There is no classical kinetic or potential energy for the barbell. The moment the man starts to lift the barbell, he does work on the barbell and transfers kinetic energy to it due to the motion. At its maximum height where the man lifts the barbell to a stop, the kinetic energy is zero because it transformed into gravitational potential energy stored in the gravitational field. Our reference point for potential was defined to be zero at the floor, therefore we can say that the gravitational potential energy at 2 meters is:

<u>Answer:</u>
Both the objects A and B will have the same acceleration.
<u>Explanation
:</u>
The objects will have the same acceleration as both are under free fall condition. When objects are under the free fall condition, the only force that acts on the object is its weight.
Weight is the force acting on a body of some mass, and the formula for finding the weight of a body is- Weight = mass × acceleration due to gravity(g).
Therefore, here the different weight is due to the difference masses of both bodies, and not due to the different acceleration values.
Answer:
It's option d - Negative acceleration
Explanation:
- Let's start by demonstrate why <em>it's not option b - Speed : </em>Speed is a scalar quantity so it can not be represented by a vector
- Let's check that <em>the green vectors represent velocity</em> (velocity is a vector quantity, velocity is a direction aware, while speed is just a scalar)
- Now let's show that the circled vectors are acceleration vectors:
Mathematically position X , velocity V and acceleration A are:
and 
Where X, V, A are vectors and
indicates the derivate a of a time is equal to b.
So, this show that acceleration is a rate respect of time of velocity ⇒ When acceleration is positive, velocity increments, when acceleration is negative, velocity decrements.
<em>The above explanation correspond to the motion map shown, getting demonstrated that the answer is D - Negative acceleration </em>
Answer:
<em><u>Here's a list of the 10 most common mistakes </u></em>we humans make when operating an automobile.
Crossing Lanes While Turning.
Using Your Daylights At Night. ...
Bad Seating Position. ...
Riding The Brakes. ...
Leaving Your High Beams On. ...
Not Using Your Turn Signal. ...
Driving Slowly In The Passing Lane. ...
Not Adjusting The Mirrors Properly. ...