The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
Answer:
Cable color codes are very important for example, If something is not wired properly, it can result in injuries, deaths, fires, and many other problems. This is why there are well-established wire color codes to ensure those working with an around this type of equipment can ensure everything is wired safely and effectively. If we used three phase cables without color code, this can lead too incorrect things that might be a hazard too get not fix and learning new color codes would be hard therefore we should stick too the same color codes for cables and it saves the hassle for needing too check every cable cord color then the original one signed too it.
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
The relationship between inductance and frequency can be clearly described using the following equation of inductive reactance:
Xl = 2*pi*f*L ; simplifying:
L = Xl / 2*pi*f
Therefore, as what we saw, inductance and frequency are inversely proportional. To add up, when inductance increases the frequency would decrease.