Answer: The final pressure will decrease ad the value is 85 kPa
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final pressure will decrease ad the value is 85 kPa
Answer: Total pressure inside of a vessel is 0.908 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.

= partial pressure of nitrogen = 0.256 atm
= partial pressure of helium = 203 mm Hg = 0.267 atm (760mmHg=1atm)
= partial pressure of hydrogen =39.0 kPa = 0.385 atm (1kPa=0.00987 atm)
Thus 
=0.256atm+0.267atm+0.385atm =0.908atm
Thus total pressure (in atm) inside of a vessel is 0.908
Answer : The concentration of A after 80 min is, 0.100 M
Explanation :
Half-life = 20 min
First we have to calculate the rate constant, we use the formula :



Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 80 min
a = initial amount of the reactant = 1.6 M
a - x = amount left after decay process = ?
Now put all the given values in above equation, we get


Therefore, the concentration of A after 80 min is, 0.100 M