984 grams of strontium will be recovered from 9.84x10^8 cubic meter of seawater.
Explanation:
From the question data given is :
volume of strontium in sea water= 9.84x10^8 cubic meter
(1 cubic metre = 1000000 ml)
so 9 .84x10^8 cubic meter
= 984 ml.
density of sea water = 1 gram/ml
from the formula mass of strontium can be calculated.
density = 
mass = density x volume
mass = 1 x 984
= 984 grams of strontium will be recovered.
98400 centigram of strontium will be recovered.
Strontium is an alkaline earth metal and is highly reactive.
Explanation:
1. Electrons surround the nucleus in defined regions called orbits.
2. The shells further away from the nucleus are larger and can hold more electrons.
3. The shells closer to the nucleus are smaller and can hold less electrons.
4. The closest shell (closest to the nucleus) can hold a maximum of two electrons.
5. Once the first shell is full, the second shell begins to fill. It can hold a maximum of eight electrons.
6. Once the second shell is full, the third shell begins to fill.
7. Once the third shell contains Eighteen electrons, the fourth shell begins to fill.
8. The arrangement of electrons in shells around the nucleus is referred to as an atom's electronic configuration.
Answer:
2,3,5,8
Explanation:
if i get them wrong sorry
Answer:
Explanation:
For a general equilibrium
aA +bB ⇔ cC + dD ,
the equilibrium constant is K = [C]^c [D]^d / [A]^a[B]^b.
Our reasoning here should be based on the fact that Q has the same expression as K, but is used when the system is not at equilibrium, and the system will react to make Q = K to attain it ( Le Chatelier´s principle ).
So with this in mind, lets answer this question.
1. False: Q can large or small but is not the value of the equilibrium constant, it will predict the side towards the equilibrium will shift to attain it.
2. False: Given the expression for the equilibrium constant, we know if K is small the concentrations of the reactants will be large compared to the equilibrium concentrations of the products.
3. False: when the value of K is large, the equilibrium concentrations of the products will be large and it will lie on the product side.
4. True: From our previous reasongs this is the true one.
5. False: If K is small, the equilibrium lies on the reactants side.