Answer: a. Carbon monoxide
Explanation:
The carbon monoxide gas competes with the oxygen in the blood to occupy the binding affinity of the hemoglobin thus the blood changes it's color to cherry red.
In postmortem lividity, the body becomes discolored due to the effect of flow of blood from the interstitial tissues and suspended under the force of gravity. This can be seen on the dependent parts of the body and the position of body after death. The color of the postmortem lividity depends on the color of the hemoglobin.
In case of carbon monoxide poisoning the color of postmortem lividity appears to be cherry red as color of the hemoglobin is cherry red. Thus cherry red or dark pinkish patches appear in the corpse as lividity.
First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.
Answer:CH3COOH + NaHCO3 > H2O + CO2(g) + CH3COONa
Explanation:acid and base neutralize creating water and CO2 gas along with a salt
Their molecules move at different speeds
Balanced equation: 2Al+Fe2O3–> Al2O3+2Fe
Using mole calculations you can find that 10g of Al produces 24.3g of Fe under the conditions described