Answer:
Explanation:
An example of binary compund is ZnI2 is zinc iodide
Make sure the equation is always balanced first. (It is balanced for this question already) 6.022 x 10^23 is Avogadro’s number. In one mole of anything there is always 6.022 x 10^23 molecules, formula units, atoms. For one mol of an element/ compound use molar mass (grams).
Multiply everything on the top = 8.61x10^47
Multiple everything on bottom= 1.20x10^24
Divide top and bottom = 7.15x10^23
Answer: 7.15x10^23 mol SO2
Example of solid - solid homogeneous mixture is copper metal - silver metal like coins and alloys.
Homogeneous mixture is a mixture in which one of the substances often changes in form as in a solution of sugar in water. It contains variable proportions. Solution can contain two substances, three substances or more, in a single physical state. The component of a solution that is present in greatest quantity is usually called the solvent and all other components are called solutes.
Answer:
The percent by mass of water in this crystal is:
Explanation:
This exercise can be easily solved using a simple rule of three where the initial weight of the hydrated crystal (6,235 g) is taken into account as 100% of the mass, and the percentage to which the mass of 4.90 g corresponds (after getting warm). First, the values and unknown variable are established:
- 6,235 g = 100%
- 4.90 g = X
And the value of the variable X is found:
- X = (4.90 g * 100%) / 6,235 g
- X = approximately 78.6%.
The calculated value is not yet the percentage of the water, since the water after heating the glass has evaporated, therefore, the remaining percentage must be taken, which can be calculated by subtraction:
- Water percentage = Total percentage - Percentage after heating.
- <u>Water percentage = 100% - 78.6% = 21.4%</u>
Answer:
Electrons
Explanation:
Cathode rays carry electronic currents through the tube. Electrons were first discovered as the constituents of cathode rays. J.J. Thomson used the cathode ray tube to determine that atoms had small negatively charged particles inside of them, which he called “electrons.”