Each stream in a drainage system drains into a certain area. In a drainage basin the water falling in the basin drain will fall into the same stream. A drainage divides drawing basin from other drainage basins
Answer:
0 N.
Explanation:
Force: This can be defined as the product of mass and the acceleration of the body. The S.I unit of force is Newton (N).
The expression of net force when both force act in the different direction is given as
F' = W-F ........................ Equation 1
Where F' = Net force on the bag, W = gravitational force on the bag, F = Force acting upward on the bag
Given: W = 18 N, F = 18 N.
Substitute into equation 1
F' = 18-18
F' = 0 N.
Hence the net force = 0 N.
Answer:
A. 148.23 m
B. 2.75 m/s
Explanation:
The following data were obtained from the question:
Time of flight (T) = 11 s
Maximum height (h) =?
Initial velocity (u) =?
Next, we shall determine the time taken for the ball to get to the maximum height. This can be obtained as follow:
Time of flight (T) = 11 s
Time (t) to reach the maximum height =.?
T = 2t
11 = 2t
Divide both side by 2
t = 11/2
t = 5.5 s
NOTE: Time to reach the maximum height is the same as the time taken for the ball to fall back to the plane of projection.
A. Determination of the maximum height to which the ball was thrown.
Time (t) to reach maximum height = 5.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =?
h = ½gt²
h = ½ × 9.8 × 5.5²
h = 4.9 × 30.25
h = 148.23 m
B. Determination of the initial velocity.
Maximum height (h) reached = 148.23 m
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =?
u² = h/2g
u² = 148.23 / (2 × 9.8)
u² = 148.23 / 19.6
Take the square root of both side
u = √(148.23 / 19.6)
u = 2.75 m/s
Explanation:
A train moves at a high velocity. Velocity is the rate of motion, speed or action. An example of velocity is a car driving at 75 miles per hour.