1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
11

Please answer as soon as possible. A Physics question about electricity and circuits.

Physics
1 answer:
kifflom [539]3 years ago
6 0
R=144 ohms with method shown on photo

You might be interested in
Introduced species often thrive and multiply in an environment very different from their original one. Why are they often able t
Anestetic [448]
They begin to adapt into their new location. They then end up having adaptations to help them survive.
8 0
3 years ago
Which best explains how thermal energy is transferred when someone holds a hand above a fire?
Artyom0805 [142]
Heat rises therefore the heat from the fire rises up to your hand... i didnt have any answer choices to work with sorry
5 0
3 years ago
Read 2 more answers
Can a object have have zero velocity and nonzero acceleration?
vladimir1956 [14]

Answer:

yes

Explanation:

3 0
3 years ago
A string under a tension of 50.4 N is used to whirl a rock in a horizontal circle of radius 2.51 m at a speed of 21.1 m/s. The s
Leokris [45]

Answer:

619.8 N

Explanation:

The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

T=m\frac{v^2}{r}

where

T is the tension

m is the mass of the rock

v is the speed

r is the radius of the circular path

At the beginning,

T = 50.4 N

v = 21.1 m/s

r = 2.51 m

So we can use the equation to find the mass of the rock:

m=\frac{Tr}{v^2}=\frac{(50.4)(2.51)}{21.1^2}=0.284 kg

Later, the radius of the string is decreased to

r' = 1.22 m

While the speed is increased to

v' = 51.6 m/s

Substituting these new data into the equation, we find the tension at which the string breaks:

T'=m\frac{v'^2}{r'}=(0.284)\frac{(51.6)^2}{1.22}=619.8 N

5 0
3 years ago
The gravitational force experienced by Earth due to the Moon is ________ the gravitational force experienced by the Moon due to
Vsevolod [243]

The gravitational force experienced by Earth due to the Moon is <u>equal to </u>the gravitational force experienced by the Moon due to Earth.

<u>Explanation</u>:

The force that attracts any two objects/bodies with mass towards each other is defined as gravitational force. Generally the gravitational force is attractive, as it always pulls the masses together and never pushes them apart.

The gravitational force can be calculated effectively using the following formula: F=GMmr^2  

where “G” is the gravitational constant.

Though gravity has the ability to pull the masses together, it is the weakest force in the nature.

The mass of the Earth and moon varies, but still the gravitational force felt by the Earth and Moon are alike.

5 0
3 years ago
Other questions:
  • mike shoots a large marble (Marble A, mass:0.05 kg) at a smaller marble (Marble B, mass: 0.03 kg) that is sitting still. Marble
    10·1 answer
  • If you throw two bowling balls up, each with different mass, does the lightest one go the highest? Why(include the factor of dra
    7·1 answer
  • What happens to volume if pressure and temperature are doubled?
    6·1 answer
  • Heat transfer occurs only in 1 case from body II to body I, 2. Heat transfer occurs only in 2 cases from body I to body II, 3. H
    13·1 answer
  • Sound travels fastest through
    9·1 answer
  • What is the root cause of earths magnetic field?
    15·1 answer
  • How can magnetic properties of a magnet be destroyed​
    6·1 answer
  • A scientist discovers a fossil of an animal and places it in the fossil record. The organism’s bones are similar to the bones of
    9·2 answers
  • Hypothesis what is it
    8·1 answer
  • How the different types of waves are form and how the waves travel
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!