Assuming that the change of volumen was done at constant pressure and the quantity of gas did not change, you use Charles' Law of gases, which is valid for ideal gases:
V / T = constant => V1 / T1 = V2 / T2 => V1 = [V2 / T2] * T1.
Now plug in the numbers ,where T1 and T2 have to be in absolute scale.
T1 = 38.1 + 273.15 K = 311.25K
T2 = 15.0 + 273.15 K = 288.15K
V1 = 4.5L * 311.25K / 288.15 K = 4.86L.
Answer: 4.86
Answer:
0.302L
Explanation:
<em>...97.1mL of 1.21m M aqueous magnesium fluoride solution</em>
<em />
In this problem the chemist is disolving a solution from 1.21mM = 1.21x10⁻³M, to 389μM = 389x10⁻⁶M. That means the solution must be diluted:
1.21x10⁻³M / 389x10⁻⁶M = 3.11 times
As the initial volume of the original concentration is 97.1mL, the final volume must be:
97.1mL * 3.11 = 302.0mL =
0.302L
They come up with a hypothesis (question to investigate), then they work out what variables and what they will be measuring, keeping the same and changing in the experiment
Hey there!
RbOH
Rb: 1 x 85.468 = 85.468
O: 1 x 16 = 16
H: 1 x 1.008 = 1.008
------------------------------------
102.476
The molar mass of RbOH is 102.476 g/mol.
Hope this helps!
Answer:
It will mess up the orbit around the sun
Explanation: