Answer:
100 teragrams of nitrogen per year
Explanation:
Nitrogen fixation in Earth's ecosystems is defined as a process where by nitrogen in air is transformed into ammonia or other related nitrogenous compounds. Generally, atmospheric nitrogen is referred to as molecular dinitrogen and it is a nonreactive compound that is metabolically useless to all but a few microorganisms. This process is vital to life due to the fact that inorganic nitrogen compounds are needed for the biosynthesis of amino acids, protein, and all other nitrogen-containing organic compounds. Thus, the natural rate of nitrogen fixation in Earth's ecosystems is 100 tetragrams of nitrogen per year.
Answer:
endoplasmic reticulum (ER)
Mass of CO₂ evolved : 0.108 g
<h3>Further explanation</h3>
Given
1.205g sample, 36% MgCO3 and 44% K2CO3
Required
mass of CO2
Solution
0.36 x 1.205 g=0.4338 g
mass C in MgCO₃(MW MgCO₃=84 g/mol, Ar C = 12/gmol)
= (12/84) x 0.4338
= 0.062 g
0.44 x 1.205 g = 0.5302 g
Mass C in K₂CO₃(MW=138 g/mol) :
= (12/138) x 0.5302
= 0.046 g
Total mass Of CO₂ :
= 0.062 + 0.046
= 0.108 g
The answer to this question would be the second option or B (The moon's orbit is closer to Earth.) because there are multiple different high tides that are caused by either the moon being unusually close to the Earth or the moon is at it's Quarterly or New Moon phases.
Hope that this helped you! :D