Answer:
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Explanation:

1 Ton = 907185 grams
Mass of copper oxide = 1.0 Ton = 907185 grams
Moles of copper oxide =
According to reaction, 2 moles of copper oxide reacts with 1 mole of carbon.
Then 11403.95 moles of copper oxide will react with:
of carbon
Mass of 5,701.98 moles of carbon:

Mass of coke = x
Mass of carbon = 68,423.75 g
Percentage of carbon in coke = 95%


The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
Great Question!
The Answer Would Be "B" The "RESPONDING" Variable
Answer:
A
Explanation:
There are three states of mater; solid liquid and gas. The sold state is the difficult to compress while the gaseous state is quite easy to compress.
A gas is easily compressed because the particles in a gas are far apart from each other. A solid is difficult to compress because the particles of a solid are close together. From all the above statements, it is easily deducible that the compressibility property of a substance in a particular state of matter depends on the proximity of the particles to each other, hence the answer above.