Complete Question:
Ions to calculate the p-values: Na⁺, Cl⁻, and NH₄⁺
Answer:
pNa = 0.307
pCl = 0.093
pNH₄ = 0.503
Explanation:
The p-value is calculated by the antilog of the concentration of the substance of interest. For example, pH = -log[H⁺]. Thus, first, let's find the ions concentration.
Both substances are salts that solubilize completely, thus, by the solution reactions:
NaCl → Na⁺ + Cl⁻
NH₄Cl → NH₄⁺ + Cl⁻
So, for both reactions the stoichiometry is 1:1:1 and the concentration of the ions is equal to the concentration of the salts.
[Na⁺] = 0.493 M
[Cl⁻] = 0.493 + 0.314 = 0.807 M
[NH₄⁺] = 0.314 M
The p-values are:
pNa = -log[Na⁺] = -log(0.493) = 0.307
pCl = -log[Cl⁻] = -log(0.807) = 0.093
pNH₄ = -log[NH₄⁺] = -log(0.314) = 0.503
Answer:
1. The pH of 1.0 M trimethyl ammonium (pH = 1.01) is lower than the pH of 0.1 M phenol (5.00).
2. The difference in pH values is 4.95.
Explanation:
1. The pH of a compound can be found using the following equation:
First, we need to find [H₃O⁺] for trimethyl ammonium and for phenol.
<u>Trimethyl ammonium</u>:
We can calculate [H₃O⁺] using the Ka as follows:
(CH₃)₃NH⁺ + H₂O → (CH₃)₃N + H₃O⁺
1.0 - x x x
By solving the above equation for x we have:
x = 0.097 = [H₃O⁺]
<u>Phenol</u>:
C₆H₅OH + H₂O → C₆H₅O⁻ + H₃O⁺
1.0 - x x x
Solving the above equation for x we have:
x = 9.96x10⁻⁶ = [H₃O⁺]
Hence, the pH of 1.0 M trimethyl ammonium is lower than the pH of 0.1 M phenol.
2. The difference in pH values for the two acids is:
Therefore, the difference in pH values is 4.95.
I hope it helps you!
The formation of Fossil Fuels.
The fossil fuels such as oil originate mostly from aquatic organism and are extracted on oil rigs located in oceans and seas. Most of the oil is procured this way.
Answer:
Explanation: A molecular compound is usually composed of two or more nonmetal elements. Molecular compounds are named with the first element first and then the second element by using the stem of the element name plus the suffix -ide. Numerical prefixes are used to specify the number of atoms in a molecule