The answer is: [C]: "elasticity" .
________________________________________
Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
Answer:
The velocity of the plane at take off is 160 m/s.
The distance travel by the plane in that time is 3200 meter.
Explanation:
Given:
Acceleration, a = 4 m/s²
Time, t = 40 s
u = 0 i .e initial velocity
To Find:
velocity , v = ?
distance , s =?
Solution:
we have first Kinematic equation
v = u + at
∴ v = 0 + 4×40
∴ v = 160 m/s
Now by Third Kinematic equation

∴ s = 0 + 0.5 × 4× 40²
∴ s = 3200 meter
Answer: 6,400 km
Explanation:
The weight of a person is given by:

where m is the mass of the person and g is the acceleration due to gravity. While the mass does not depend on the height above the surface, the value of g does, following the formula:

where
G is the gravitational constant
M is the Earth's mass
r is the distance of the person from the Earth's center
The problem says that the person weighs 800 N at the Earth's surface, so when r=R (Earth's radius):
(1)
Now we want to find the height h above the surface at which the weight of the man is 200 N:
(2)
If we divide eq.(1) by eq.(2), we get


By solving the equation, we find:

which has two solutions:
--> negative solution, we can ignore it
--> this is our solution
Since the Earth's radius is
, the person should be at
above Earth's surface.
Answer:
option b
Explanation:
the heavier one will have twice the kinetic energy of the lighter one