(D)
Explanation:
The more massive an object is, the greater is the curvature that they produce on the space-time around it.
The elastic potential energy of a spring is given by

where k is the spring's constant and x is the displacement with respect to the relaxed position of the spring.
The work done by the spring is the negative of the potential energy difference between the final and initial condition of the spring:

In our problem, initially the spring is uncompressed, so

. Therefore, the work done by the spring when it is compressed until

is

And this value is actually negative, because the box is responsible for the spring's compression, so the work is done by the box.
Answer:
(a) V = 0.75 m/s
(b) V = 0.125 m/s
Explanation:
The speed of the flow of the river can be given by following formula:
V = Q/A
V = Q/w d
where,
V = Speed of Flow of River
Q = Volume Flow Rate of River
w = width of river
d = depth of river
A = Area of Cross-Section of River = w d
(a)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 20 m
d = 20 m
Therefore,
V = (300 m³/s)/(20 m)(20 m)
<u>V = 0.75 m/s</u>
<u></u>
(b)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 60 m
d = 40 m
Therefore,
V = (300 m³/s)/(60 m)(40 m)
<u>V = 0.125 m/s</u>
Answer:
it creates a gas called carbon dioxide. The gas begins to expand in the bottle and starts to inflate the balloon
Explanation:
Why does this happen? well, The faster-moving particles inside the bottle start to move faster and faster and soon they expand to fill the balloon.