Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation:
Answer:
Explanation:
In a conductor, electric current can flow freely, in an insulator it cannot.
Metals such as copper typify conductors, while most non-metallic solids are said to be good insulators, having extremely high resistance to the flow of charge through them.
Most atoms hold on to their electrons tightly and are insulators.
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Since Force, F = ma where m = mass and a = acceleration. For constant mass, F ∝ a. That is, F is directly proportional to acceleration, a.
Since this is a linear relationship, the graph of force vs acceleration will be linear.
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Learn more about graphs here:
brainly.com/question/24322515
Answer:
Newton's second law of motion states that the acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass. In equation form, Newton's second law of motion is a=Fnetm a = F net m .
Explanation: