Answer:
0.906
Explanation:
Let g = 9.81 m/s2. We can calculate the rate of change in potential energy when m = 201kg of water is falling down a distance of h = 131m per second

So the efficiency of the water turbine is the ratio of output power over input power:

Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!
Answer:

Explanation:
Given that,
The car traveled a total of 1,200 meters during this test.
We need to find the average speed of the car. The average speed of the car is given by total distance covered divided by the time taken. So,

But putting the value of t we can find the average speed of the car.
Answer:
1.) 4m
2.) 37 m
3.) 62m
4.) 2.5 s
Explanation:
1.) Given that the
Thinking distance = 1m
Breaking distance = 3m
Stopping distance = breaking distance + thinking distance
Stopping distance = 1 + 3 = 4m
2.) Given that the
Stopping distance = 52 m
Thinking distance = 15m
Breaking distance = 52 - 15 = 37m
3.) The stopping distance = 76m
Thinking distance = 14m
Breaking distance = 76 - 14 = 62m
It take the brakes 62m to slow the car down to a stop.
4.) Given that a lorry travels 28m when stopping from a speed of 4m/s. If its braking distance was 18m, what was the driver’s reaction time?
Thinking = stopping distance - braking distance
Thinking distance = 28 - 18 = 10m
Speed = distance/time
4 = 10/reaction time
Reaction time = 10/4
Reaction time = 2.5 s
5.) Question incomplete