Answer:
2
Explanation:
To find force it's force = mass times acceleration so to find mass you would divide force by acceleration
Weight equals mass times gravitational acceleration=400N, so mass=400/9.8=41kg approx.
Answer:
Tension, T = 87.63 N
Explanation:
Given that,
Mass of the object, m = 6.9 kg
The string is acting in the upward direction, a = 2.9 m/s²
Acceleration due to gravity, g = 9.8 m/s²
As the lift is accelerating upwards, it means the net force acting on it is given by :
T = m(a+g)
= 6.9 (2.9+9.8)
= 6.9(2.7)
= 87.63 N
So, the tension in the string is 87.63 N.
To solve this problem it is necessary to apply the equations given from Bernoulli's principle, which describes the behavior of a liquid moving along a streamline. Mathematically this expression can be given as,

Where,
Pressure at each state
= Density
Velocity
Re-organizing the expression we can get that

Our values are given as


Normal Conditions
Replacing we have,


If we consider that there is a balance between the two states, the Force provided by gravity is equivalent to the Support Force, therefore

Here the lift force is the product between the pressure difference previously found by the effective area of the aircraft, while the Force of gravity represents the weight. There,


Equating,



Therefore the weight of the plane is 14535N