Answer:
Newton's second law of motion
Explanation:
Newton's second law of motion can be stated
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
in another form,
Force = mass * acceleration
Answer:
C. The bug's change in momentum is equal to the car's change in momentum.
Explanation:
As we know by Newton's 2nd law

here we have also know that when car hits the bug then force applied by wind shield on the bug is same as the force applied by the bug on the car's wind shield as per Newton's III law

so we know that

so we have

so correct answer will be
C. The bug's change in momentum is equal to the car's change in momentum.
Answer:
dT(t)/dt = k[T5 - T(t)]
Explanation:
Since T(t) represents the temperature of the object and T5 represents the temperature of the surroundings, according to Newton's law of cooling, the rate at which an object's temperature changes is directly proportional to the difference in temperature between the object and the surrounding medium, that is dT(t)/dt ∝ T5 - T(t)
Introducing the constant of proportionality
dT(t)/dt = k[T5 - T(t)]
which is the desired differential equation
Answer: An object at rest has zero velocity - and (in the absence of an unbalanced force) will remain with a zero velocity. Such an object will not change its state of motion.
Explanation: I hoped that helped!!