This is best explained through the use of an optics diagram, this is a little too complicated to explain in a short answer, and as I can't draw an appropriate diagram in this answer, I will point you to this excellent resource which explains what you have asked very well!
Go onto the BBC website (you should have access to it even if you aren't in the UK) and paste this after the BBC url,
/bitesize/intermediate2/physics/waves_and_optics/image_formation_from_lens/revision/1/
The answer to this question to A. The other choices are positive.
Answer:
a) X = 17.64 m
b) X = 17.64 + 4∆t^2 + 16.8∆t
c) Velocity = lim(∆t→0)〖∆X/∆t〗 = 16.8 m/s
Explanation:
a) The position at t = 2.10s is:
X = 4t^2
X = 4(2.10)^2
X = 17.64 m
b) The position at t = 2.10 + ∆t s will be:
X = 4(2.10 + ∆t)^2
X = 17.64 + 4∆t^2 + 16.8∆t m
c) ∆X is the difference between position at t = 2.10s and t = 2.10 + ∆t so,
∆X= 4∆t^2 + 16.8∆t
Divide by ∆t on both sides:
∆X/∆t = 4∆t + 16.8
Taking the limit as ∆t approaches to zero we get:
Velocity =lim(∆t→0)〖∆X/∆t〗 = 4(0) + 16.8
Velocity = 16.8 m/s
Solids are the best at conducting heat.