1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
3 years ago
9

Nami conducts an investigation on plants. She places a grow light on a timer to give the plants different amounts of light to se

e if this would affect their growth. Which term describes the amount of light in this investigation?
Physics
2 answers:
elena-s [515]3 years ago
7 0

Answer:

It is independent variable

Explanation:

hammer [34]3 years ago
7 0

Answer:

D

Explanation:

You might be interested in
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
Which words describe the composition of the inner planets ? Select three options,
IgorLugansk [536]

Answer:a b c

Explanation: I’m not sure tho

7 0
4 years ago
Read 2 more answers
Which equation describes the line containing the points (-2, 3) and (1, 2)​
snow_lady [41]

Answer:

y =  \frac{ - 1}{3}x +  \frac{7}{3}

Explanation:

\frac{y - 3}{2 - 3}  =  \frac{x + 2}{1 + 2}  \\  \ - y + 3 =  \frac{x + 2}{3}  \\  y =   \frac{ - 1}{3}x  +  \frac{7}{3}

8 0
3 years ago
Olympic gold medalist Michael Johnson runs one time around the track 400 meters in 38 seconds what is his displacement what is h
Sveta_85 [38]
Displacement = 0, assuming that he runs back to original position
Average velocity is displacement/ time, since displacement =0, velocity is also 0
8 0
3 years ago
Calculate the kinetic energy of a moving 4 kg object traveling at a velocity of 3 m/a
Alina [70]

Answer:

Explanation:KE = 18 J

7 0
3 years ago
Other questions:
  • A cylinder with a movable piston contains 2.00 gg of helium, HeHe, at room temperature. More helium was added to the cylinder an
    5·2 answers
  • Compared to the sun, a star whose spectrum peaks in the infrared is:
    6·1 answer
  • HELPP ME PLEASE !!!! In your own words, explain how the number of sunspots can affect the overall global climate on Earth. 50 PO
    13·1 answer
  • What is the potential energy of a 500 N weight before it falls 10 m ?
    10·1 answer
  • The water table is _____. found in the unsaturated zone always in the same location the top layer of the saturated zone made of
    11·2 answers
  • Consider the field E1 in the dielectric on the left of this interface. E1= 3ax+4ay+5az The interface lies in the z=0 plane. Find
    14·1 answer
  • One light-year is the distance light travels in one year. This distance is equal to 9.461 1015 m. After the sun, the star neares
    6·1 answer
  • organisims that have a physical trait that makes it easier for them o access food supply are unlikely to pass on that trait to t
    14·1 answer
  • What is the name of the database that Tim Berners Lee built??​
    6·2 answers
  • Mass is not volume.<br> True<br> False
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!