Answer:
17.82J
Explanation:
Kinetic energy = 1/2 mv^2
Given
Mass M = 0.45kg
Velocity v = 8.9m/s
Therefore,
K.E. = 1/2 x 0.45 x (8.9)^2
= 1/2 x 0.45 x (8.9 x 8.9)
= 1/2 x 0.45 x 79.21
Multiply through
= 35.6445/2
= 17.82J
The kinetic energy of the ball is 17.82J
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
Answer:
0.775 m
Explanation:
As the car collides with the bumper, all the kinetic energy of the car (K) is converted into elastic potential energy of the bumper (U):

where we have
is the spring constant of the bumper
x is the maximum compression of the bumper
is the mass of the car
is the speed of the car
Solving for x, we find the maximum compression of the spring:

Expression to calculate energy from voltage: E= V*Q where E= energy, V= voltage, and Q= charge
Additional help:
-To find the Voltage ( V )
[ V = I x R ] V (volts) = I (amps) x R (Ω)
-To find the Current ( I )
[ I = V ÷ R ] I (amps) = V (volts) ÷ R (Ω)
-To find the Resistance ( R )
[ R = V ÷ I ] R (Ω) = V (volts) ÷ I (amps)
I hope that helps to some extent-