To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,
Where,
c = Speed of light (vacuum)
f = frequency
Our values are,
Replacing we have,
<em>Therefore the wavelength of this wave is </em>
To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
Answer:
162.8 K
Explanation:
initial current = io
final current, i = io/8
Let the potential difference is V.
coefficient of resistivity, α = 43 x 10^-3 /K
Let the resistance is R and the final resistance is Ro.
The resistance varies with temperature
R = Ro ( 1 + α ΔT)
V/i = V/io (1 + α ΔT )
8 = 1 + 43 x 10^-3 x ΔT
7 = 43 x 10^-3 x ΔT
ΔT = 162.8 K
Thus, the rise in temperature is 162.8 K.