Question requires a change resulting in an increase in both forward and reverse reactions. Now lets discuss options one by one and see there impact on rate of reactions.
1) <span>A decrease in the concentration of the reactants:
When concentration of reactant is decreased it will shift the equilibrium in Backward direction, so resulting in increasing the backward reaction and decreasing the forward direction. Hence, this option is incorrect.
2) </span><span>A decrease in the surface area of the products:
Greater the surface Area greater is the chances of collision and greater will be the rate of reaction. As the surface area of products is decreased it will not favor the backward reaction. Hence again this statement is incorrect according to given statement.
3) </span><span>An increase in the temperature of the system:
An increase in temperature will shift the reaction in endothermic side. Hence, if the reaction is endothermic, an increase in temperature will increase the rate of forward direction or if the reaction is exothermic it will increase the rate of reverse direction. Hence, this option is correct according to given statement.
4) </span><span>An increase in the activation energy of the forward reaction:
An increase in Activation energy will decrease the rate of reaction, either it is forward or reverse. So this is incorrect.
Result:
Hence, the correct answer is,"</span>An increase in the temperature of the system".
Formula for hydroselenic acid: H2Se
Answer:
copper
Explanation:
metallic bonds occur among the metal atoms where iconic bonds join metal and nonmetals metallic bonding joins a bolt of metal atoms a sheet of aluminum foil and a copper wire are both place where you can see metallic bonding in action the Sea of electrons that is free to flow about the crystal of positive metal ions
Explanation:
Expression for rate of the given reaction is as follows.
Rate = k[HgCl_{2}]x [C_{2}O^{2-}_{4}]y[/tex]
Therefore, the reaction equations by putting the given values will be as follows.
............. (1)
........... (2)
............ (3)
Now, solving equations (1) and (2) we get the value of y = 2. Therefore, by solving equation (2) and (3) we get the value of x = 1.
Therefore, expression for rate of the reaction is as follows.
Rate = ![k[HgCl_{2}]x [C_{2}O^{2-}_{4}]y](https://tex.z-dn.net/?f=k%5BHgCl_%7B2%7D%5Dx%20%5BC_%7B2%7DO%5E%7B2-%7D_%7B4%7D%5Dy)
Rate = ![k [HgCl2]1 [C_{2}O^{-2}_{4}]2](https://tex.z-dn.net/?f=k%20%5BHgCl2%5D1%20%5BC_%7B2%7DO%5E%7B-2%7D_%7B4%7D%5D2)
Hence, total order = 1 + 2 = 3
According to equation (1),
k =
Thus, we can conclude that rate constant for the given reaction is
.
It gives you the amount of shells, electrons, the type of group it’s one for example: metalloids. The protons and neutrons in that group.