<span>Germination
Germination is the procedure of seeds forming into new plants. To start with, ecological conditions must trigger the seed to develop. For the most part, this is controlled by how profound the seed is planted, water accessibility, and temperature. At the point when water is abundant, the seed loads with water in a procedure called imbibition.</span>
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s
Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3 m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1 V = 1.50*10^-3 m^3 ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.

W = 3.12 J
Hope this helps!