Answer:
Sample response:
The costs of using both renewable and nonrenewable resources depend on the extent of the use. If renewable resources are managed wisely, the use of the resource will not exceed the rate at which it is replenished. In this instance the cost of using renewable resources can be minimized, if not entirely eliminated. The cost of using nonrenewable resources is harder to minimize because nonrenewable resources cannot be replenished at the rate at which they are used. The environmental impact of using nonrenewable resources such as fossil fuels is greater than just the loss of the resource itself. Other impacts such as acid rain, global warming, and atmospheric pollution can result from the use of nonrenewable resources.
Explanation:
2021 edge
have a nice day
Answer:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
Explanation:
Chemical equation:
CO + O₂ → CO₂
Balanced chemical equation:
2CO + O₂ → 2CO₂
The standard enthalpy for the formation of CO = -110.5 kj/mol
The standard enthalpy for the formation of O₂ = 0 kj/mol
The standard enthalpy for the formation of CO₂ = -393.5 kj/mol
Now we will put the values in equation:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol + 0]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol]
ΔH0reaction = -283 kj/mol
Answer:
• One mole of oxygen is equivalent to 16 grams.
→ But at STP, 22.4 dm³ are occupied by 1 mole.

Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)