The vapor pressure of water at 50ºC will be greater than that at 10ºC because of the added energy and thus greater movement of the water molecules. If one knows the ∆Hvap at a given temperature, one can calculate the vapor pressure at another temperature. This uses the Clausius-Clapeyron (sp?) equation. It turns out the vapor pressure of water at 10º is 9.2 mm Hg, and that at 50º is 92.5 mm Hg.
Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
I think it would be solubility but I’m not sure
Na3P is the formula if that helps