Answer:
V (initial vertical velocity) = 45.4 sin 31.2 = 23.52 m/s
1/2 m V^2 = m g h conservation of energy
h = V^2 / (2 g) = 23.52^2 / 19.6 = 28.2 m max height
Check:
t = 28.2 / 9.8 = 2.88 sec time to reach max height
h = 23.52 * 2.88 - 1/2 g 2.88^2 = 27.1 m
The medium of ocean waves are In the case of a water wave in the ocean, the medium through which the wave travels is the ocean water. In the case of a sound wave moving from the church choir to the pews, the medium through which the sound wave<span> travels is the air in the room.</span>
A radio station broadcast on a frequency of 3.7 mhz what is the energy of the radio wave A radio station broadcasts its programmes at a wavelength of 500 m. Find the frequency of the radiowaves transmitted by the radio station, if the speed of radiowaves in air is 3 x 108 m/s. Ans: 6 x 10 Hz
<h3>What is
radio station ?</h3>
Radio broadcasting is the act of sending audio (sound), occasionally together with accompanying metadata, across radio waves to radio receivers used by the general public. Unlike satellite radio, which uses a satellite in Earth's orbit, terrestrial radio broadcasting uses a land-based radio station to transmit radio waves. The listener needs a broadcast radio receiver to hear the material (radio). A radio network with which stations frequently have affiliations provide content in a standard radio format, whether through broadcast syndication, simulcasting, or both. Radio stations use a variety of modulations to transmit their signals, including FM (frequency modulation), which is an older analog audio standard, and AM (amplitude modulation).
To learn more about radio station from the given link:
brainly.com/question/26439029
#SPJ4
Answer:
52 mm/s (approximately)
Explanation:
Given:
Initial speed of the projectile is, 
Angle of projection is, 
Time taken to land on the hill is, 
In a projectile motion, there is acceleration only in the vertical direction which is equal to acceleration due to gravity acting vertically downward. There is no acceleration in the horizontal direction.
So, the velocity in the horizontal direction always remains the same.
The horizontal component of initial velocity is given as:

Now, the velocity in the vertical direction goes on decreasing and becomes 0 at the highest point of the trajectory. So, at the highest point, only horizontal component acts.
Therefore, the projectile's velocity at the highest point of its trajectory is equal to the horizontal component of initial velocity and thus is equal to 52 mm/s.