Answer:
Explanation:
The number of moles of solute is equal to product of the molar concentration (molarity) and the volume (in liters) of solution.
Since the volumes and the molar concentrations of the<em> NaOH </em>and <em>HCl </em>solutions mixed are equal, each one of them contributes the same number of moles of solute.
Since every mol of NaOH produces one mol of OH⁻ ions and every mol of HCl produces one mol of H⁺ ion, the number of moles of OH ⁻ and H⁺ in solution are equal.
Thus, OH⁻ and H⁺ ions will be neutralized by the reaction:
- OH⁻ (aq) + H⁺ (aq) ⇄ H₂O (l)
Which is strongly shifted to the right and has <em>neutral pH</em>.
Hence, you conclude that the approximate <em>pH of the solution is neutral.</em>
The answer is C
Why:
A - this is natural
B - water is natural
D - this is also natural
C- this is right because when we breathe out we produce more carbon dioxide then we breathed in.
Answer:
jdjdjdhjxjxjchxjxjkxjxjxhxnxkjcjcjcj
Explanation:
sorry i just need point lolllllllllll
They represent elements by using symbols
Answer:
For eacht 4 moles Fe consumed, we will produce 2 moles Fe2O3
The mole ration is 4:2 (option 1)
Explanation:
Step 1: The unbalanced equation
Fe + O2 → Fe2O3
Step 2: Balancing the equation
Fe + O2 → Fe2O3
On the left side we have 2x O (in O2) and on the right side we have 3x O (in Fe2O3) . To balance the amount of O on both sides, we have to multiply O2 by 3 and Fe2O3 by 2.
Fe + 3O2 → 2Fe2O3
On the left side we have 1x Fe, On the right side we have 4x (in 2Fe2O3). To balance the amount of Fe we have to multiply Fe (on the left side) by 4.
Now the equation is balanced.
4Fe + 3O2 → 2Fe2O3
For eacht 4 moles Fe consumed, we will produce 2 moles Fe2O3
The mole ration is 4:2 (option 1)