homeostatic imbalance is the answer, because it's when the internal environment cannot remain in equilibrium.
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
The atoms of elements can gain or lose electrons and become ions. Ions are charged particles that have gained or lost electrons. The atoms of elements can gain or lose electrons to form monatomic ions (made from a single atom of an element).
Answer:

Explanation:
Hello there!
In this case, according to the given STP (standard pressure and temperature), it is possible for us to realize that the equation to use here is the Avogadro's law as a directly proportional relationship between moles and volume:

In such a way, given the initial volume and both initial and final moles, we can easily compute the final volume as shown below:

Best regards!