Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)
Answer:
Radioactive isotopes ranging from 11O to 26O have also been characterized, all short-lived. The longest-lived radioisotope is 15O with a half-life of 122.24 seconds, while the shortest-lived isotope is 12O with a half-life of 580(30)×10−24 seconds (the half-life of the unbound 11O is still unknown).
You can have as many controls as necessary, But they must remain equal at all times in order to get the most accurate results
Answer:
fe3o4+4h2 - 3fe + 4h2o
therefore coefficient is 4
From the given equations, the combustion reaction is;
C₄H₁₂ + 7O₂ --> 4CO₂ + 6H₂O
Combustion reactions are when organic compounds react with O₂ to produce water and CO₂. From the given reactions, C₄H₁₂ is an organic compound that reacts with O₂ to produce water and CO₂.
Therefore this is the only reaction that follows the general equation for combustion.