Answer:11.7 meters
Explanation: Gravitational acceleration (g)
9.8
m/s²
Initial velocity (v₀)
0
ft/s
Height (h)
11.77225
m
Time of fall (t)
1.55
sec
Velocity (v)
15.19
m/s
Answer:
Yes
Explanation:
If the acceleration has an opposite direction to the velocity of the car, this means that it is opposed to is motion. Therefore, it is called deceleration, since the car's velocity will decrease until it stops and then will start it moving towards the west.
Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.
If the pulling is done parallel to the floor with constant velocity, then the box is in equilibrium. In particular, the weight and normal force cancel, so that
<em>n</em> = 38 N
The friction force is proportional to the normal force by a factor of 0.27, so that
<em>f</em> = 0.27 (38 N) ≈ 10.3 N
and so the answer is D.