1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
11

A mole of a monatomic ideal gas at point 1 (101 kPa, 5 L) is expanded adiabatically until the volume is doubled at point 2. Then

it is cooled isochorically until the pressure is 20 kPa at point 3. The gas is now compressed isothermally until its volume is back to 5 L (point 4). Finally, the gas is heated isochorically to return to point 1.
a. Draw the four processes and label the points in the pV plane.
b. Calculate the work done going from 1 to 2.
c. Calculate the pressure and temperature at point 2.
d. Calculate the temperature at point 3.
e. Calculate the temperature and pressure and point 4.
f. Calculate the work done going from from 3 to 4.
g. Calculate the heat flow into the gas going from 3 to 4. g
Physics
1 answer:
Paha777 [63]3 years ago
6 0

Answer:

(a). Check attachment.

(b). 280.305 J.

(c). 31.81 kpa; 38.26K.

(d). 24.05K.

(e). 24.05k; 40kpa.

(f). -138.6J.

Explanation:

(a). Kindly check the attached picture for the diagram showing the four process.

1 - 2 = adiabatic expansion process.

2 - 3 = Isochoric process.

3 - 4 = isothermal process.

4 - 1 = isochoric process.

(b). Recall that the process from 1 to is an adiabatic expansion process.

NB: b = 5/3 for a monoatomic gas.

Then, the workdone = (1/ 1 - 1.66) [ (p1 × v1^b)/ v2^b × v2 - (p1 × v1)].

= ( 1/ 1 - 5/3) [ (101 × 5^5/3) × 10^1 -5/3] - 101 × 5.

Thus, the workdone = 280.305 J.

(c). P2 = P1 × V1^b/ V2^b = 101 × 5^5/3/ 10^5/3 = 31.81 kpa.

T2 = P2 × V2/ R × 1 = 31.81 × 10/ 8.324 = 38.36k.

(d). The process 2 - 3 is an Isochoric process, then;

T3 = T2/P2 × P3 = 38.26/ 31.82 × 20 = 24.05K.

(e). The process 3 - 4 Is an isothermal process. Then, the temperature at 4 will be the same temperature at 3. Tus, we have the temperature; point 3 = point 4 = 24.05k.

The pressure can be determine as below;

P4 = P3 × V3/ V4 = 20 × 10/ 5 = 200/ 5 = 40 kpa.

(f) workdone = xRT ln( v4/v3) = 1 × 8.314 × 24.05 × ln (5/10) = - 138.6 J

You might be interested in
Ocean waves of wavelength 26 m are moving directly toward a concrete barrier wall at 4.0 m/s . The waves reflect from the wall,
Genrish500 [490]

Answer:

a) the distance between her and the wall is 13 m

b) the period of her up-and-down motion is 6.5 s

Explanation:

Given the data in the question;

wavelength λ = 26 m

velocity v = 4.0 m/s

a) How far from the wall is she?

Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;

x = λ/2

we substitute

x = 26 m / 2

x = 13 m

Therefore, the distance between her and the wall is 13 m

b) What is the period of her up-and-down motion?

we know that the relationship between frequency, wavelength and wave speed is;

v = fλ

hence, f = v/λ

we also know that frequency is expressed as the reciprocal of the time period;

f = 1/T

Hence

1/T = v/λ

solve for T

Tv = λ

T = λ/v

we substitute

T = 26 m / 4 m/s

T = 6.5 s

Therefore, the period of her up-and-down motion is 6.5 s

 

6 0
3 years ago
A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobber
Tasya [4]

Answer:

Explanation:

Calculate the volume of the lead

V=\frac{m}{d}\\\\=\frac{10g}{11.3g'cm^3}

Now calculate the bouyant force acting on the lead

F_L = Vpg

F_L=(\frac{10g}{11.3g/cm^3} )(1g/cm^3)(9.8m/s^2)\\\\=8.673\times 10^{-3}N

This force will act in upward direction

Gravitational force on the lead due to its mass  will act in downward direction

Hence the difference of this two force

T=mg-F_L\\\\=(10\times10^{-3}kg(9.8m/s^2)-8.673\times 10^{-3}\\\\=8.933\times10^{-3}N

If V is the volume submerged in the water then bouyant force on the bobber is

F_B=V'pg

Equate bouyant force with the tension and gravitational force

F_B=T_mg\\\\V'pg=\frac{(8.933\times10^{-2}N)+mg}{pg} \\\\V'=\frac{(8.933\times10^{-2}N)+mg}{pg}

Now Total volume of bobble is

\frac{V'}{V^B} =\frac{\frac{(8.933\times10^{-2})+Mg}{pg} }{\frac{4}{3} \pi R^3 }\times100\\\\=\frac{\frac{(8.933\times10^{-2})+(3)(9.8)}{(1000)(9.8)} }{\frac{4}{3} \pi (4.0\times10^{-2})^3 }\times100\\\\

=\large\boxed{4.52 \%}

7 0
3 years ago
An AC generator consists of 20 circular loops of wire with an area of 75 cm2. It has a maximum induced voltage of 24 V. If its a
Monica [59]

Faraday's law allows us to find the magnetic field that produces the emf in the rotating system is:

  • The magnetic field is:  B = 0.424 T

Faraday's law of induction states that when the magnetic flux changes in time, an induced electromotive force is produced.

            fem = - \frac{d \Phi_B }{dt}  

where fem is the induced electromotive force and Ф the flux,

The magnetic flux is the scalar product of the field and the area.

           \Phi_B = B . A = B A  \ cos \theta  

In this case we have several turns, so the expression remains.

           fem = - N B A \ \frac{d cos \theta}{dt}  

Indicate that the turns rotate at a constant frequency, therefore we can use the uniform rotational motion ratio.

           

           θ = w t

We substitute

 

         fem = - N B A \ \frac{d \ cos \ wt}{dt}\\fem =  N B A w sin \ wt

the maximum induced electromotive force occurs when the sine function is ±1

          fem = N B A w

They indicate that the fem = 24 V, the number of the turn is N = 20, the area is A = 75 cm² = 75 10⁻⁴ m² and the frequency f = 60 Hz

Frequency and angular velocity are related.

           w = 2π f

We substitute.

           fem = N B A 2π f

           B = \frac{fem }{2 \pi \ NA \ f}  

Let's calculate.

         B= \frac{24 }{2\pi \ 20 \ 75 \ 10^{-4} 60}B = 24 / 2pi 20 75 10-4 60

         B = 0.424 T

In conclusion, using Faraday's law we can find the magnetic field that produces the emf in the rotating system is:

  • The magnetic field is; B = 0.424 T

Learn more about Faraday's law here:  brainly.com/question/24617581

8 0
3 years ago
A 20 ft ladder leans against a wall. The bottom of the ladder is 3 ft from the wall at time t=0 and slides away from the wall at
stellarik [79]

Answer: 0.516 ft/s

Explanation:

Given

Length of ladder L=20 ft

The speed at which the ladder moving away is v=2 ft/s

after 1 sec, the ladder is 5 ft away from the wall

So, the other end of the ladder is at

\Rightarrow y=\sqrt{20^2-5^2}=19.36\ ft

Also, at any instant t

\Rightarrow l^2=x^2+y^2

differentiate w.r.t.

\Rightarrow 0=2xv+2yv_y\\\\\Rightarrow v_y=-\dfrac{x}{y}\times v\\\\\Rightarrow v_y=-\dfrac{5}{19.36}\times 2=0.516\ ft/s

5 0
3 years ago
A circular force is applied to a​
lara [203]

Explanation:

A centripetal force (from Latin centrum, "center" and petere, "to seek") is a force that makes a body follow a curved path. (not sure but hope this helps )

8 0
3 years ago
Read 2 more answers
Other questions:
  • An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
    13·1 answer
  • _____ friction is the force that sliding objects experience
    8·1 answer
  • Sound pulses emitted by a dolphin travel through 20°c ocean water at a rate of 1450 m/s. in 20°c air, these pulses would travel
    6·1 answer
  • What question was asked by Faraday that the narrator calls a leap
    10·2 answers
  • The freight cars a and b have a mass of 20 mg and 15 mg, respectively. if the cars collide and couple together, what is the velo
    13·2 answers
  • Name three variables that affect a life system
    6·2 answers
  • A technician services the carburetor, and then, performs a complete governor system adjustment. The governor system on the engin
    11·1 answer
  • Identify the electrical properties of materials that are highly conductive and those that are used in insulation. Use one or two
    9·1 answer
  • A physical (beam) is used to measure?​
    5·2 answers
  • A camera has a lens which is a curved piece of glass. This lens takes the beams of light from an object and redirects it to form
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!