Answer: ok the best one would be letter s because it goes
Explanation:
467,,mm tubing should do
Answer:
The average velocity is 0.203 m/s
Explanation:
Given;
initial displacement, x₁ = 20 yards = 18.288 m
final displacement, x₂ = ¹/₃ x 18.288 = 6.096 m
change in time between 5:02 PM and 5:03 PM, Δt = 3 mins - 2 mins = 1 min = 60 s
The average velocity is given by;
V = change in displacement / change in time
V = (x₂ - x₁) / Δt
V = (18.288 - 6.096) / 60
V = 0.203 m/s
Therefore, the average velocity is 0.203 m/s
Answer:
well you could get some green goblin it disolves all the c rap in sink
Explanation:
OA bloom is smaller than a bar
Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C