Answer:
我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈
Explanation:
我實際上不知道答案,我只是為了點我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈數而這樣做,哈哈,祝你好運哈哈
Answer:
2.24 Liters are in 4.4 grams of CO2 at STP
Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
Answer:
396811.337 J
Explanation:
The cost of one short ton of coal = $56.45
The energy related to the short ton of coal = 
Thus, As according to the question,
$56.45 of coal have
of energy.
$1 of coal have
of energy.
<u>The amount of energy = 396811.337 J</u>
The grams of oxygen that are required to produce 1 mole of H₂O is 16 g ( answer B)
<u><em> calculation</em></u>
2 CH₄ + 2NH₃ +3 O₂ → 2HCN + 6H₂O
step 1: use the mole ratio to find moles of O₂
from equation above the mole ratio of O₂: H₂O is 3:6 therefore the moles of O₂ = 1 mole x3/6 =0.5 moles
step 2: find mass of O₂
mass= moles x molar mass
from periodic table the molar mass of O₂ = 16 x2= 32 g/mol
mass O₂ = 0.5 moles x 32 g/mol = 16 g (answer B)