Answer: well the answer is a
Explanation: how because I did that
Answer: I think it’s B
explanation
2 valence electrons
Explanation:
Most transition metals have 2 valence electrons. Valence electrons are the sum total of all the electrons in the highest energy level (principal quantum number n). Most transition metals have an electron configuration that is ns2(n−1)d , so those ns2 electrons are the valence electrons.
Explanation:
the pH of the solution defined as negatuve logarithm of
ion concentration.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
1. Hydrogen ion concentration when pH of the solution is 11.
![11=-\log[H^+]](https://tex.z-dn.net/?f=11%3D-%5Clog%5BH%5E%2B%5D)
..(1)
At pH = 11, the concentration of
ions is
.
2. Hydrogen ion concentration when the pH of the solution is 6.
![6=-\log[H^+]'](https://tex.z-dn.net/?f=6%3D-%5Clog%5BH%5E%2B%5D%27)
..(2)
At pH = 6, the concentration of
ions is
.
3. On dividing (1) by (2).
![\frac{[H^+]}{[H^+]'}=\frac{1\times 10^{-11} mol/L}{1\times 10^{-6} mol/L}=1\times 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BH%5E%2B%5D%27%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-11%7D%20mol%2FL%7D%7B1%5Ctimes%2010%5E%7B-6%7D%20mol%2FL%7D%3D1%5Ctimes%2010%5E%7B-5%7D%20)
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is
.
4. Difference between the
ions at both pH:

This means that Hydrogen ions in a solution at pH = 7 has
ions fewer than in a solution at a pH = 6
562 grams because mass can not be created or destroyed