Answer:
See below
Explanation:
Vertical position is given by
df = do + vo t - 1/2 a t^2 df = final position = 0 (on the ground)
do =original position = 2 m
vo = original <u>VERTICAL</u> velocity = 0
a = acceleration of gravity = 9.81 m/s^2
THIS BECOMES
0 = 2 + 0 * t - 1/2 ( 9.81)t^2
to show t =<u> .639 seconds to hit the ground </u>
During this .639 seconds it flies horizontally at 10 m/s for a distance of
10 m/s * .639 s =<u> 6.39 m </u>
Answer:
The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Explanation:
From the question we are told that
The distance between earth and Retah is 
Here c is the peed of light with value 
The time taken to reach Retah from earth is 
The velocity of the spacecraft is mathematically evaluated as

substituting values


The time elapsed in the spacecraft’s frame is mathematically evaluated as

substituting value
![T = 90000 * \sqrt{ 1 - \frac{[2.4*10^{8}]^2}{[3.0*10^{8}]^2} }](https://tex.z-dn.net/?f=T%20%20%3D%20%2090000%20%2A%20%20%5Csqrt%7B%201%20-%20%20%5Cfrac%7B%5B2.4%2A10%5E%7B8%7D%5D%5E2%7D%7B%5B3.0%2A10%5E%7B8%7D%5D%5E2%7D%20%7D)

=> 
So The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
More force needs to be applied
The answer is 2.3. I just answered this question and got it right.
B is the answer
Explanation: look at the graph