The best answer is b - span.
A span is the distance between two bridge supports The supports may be towers, columns, or even the wall of a canyon.
There are many kinds of bridges but they all fall into three types namely beam, arch and suspension. The major difference between these three kinds of bridges is the distance that each can cross in a single span.
For example, a modern beam bridge is likely to span a distance of 200 feet, a modern arch can span 800 or 1000feet, and a modern suspension bridge can span up to 7000ft.
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
Wave reflection occurs when waves reflect or rebound off of a surface. This is like an echo because the sound waves are reflected from a distant surface
Answer:
The horizontal component of the vector ≈ -16.06
The vertical component of the vector ≈ 19.15
Explanation:
The magnitude of the vector,
= 25 units
The direction of the vector, θ = 130°
Therefore, we have;
The horizontal component of the vector, Rₓ =
× cos(θ)
∴ Rₓ = 25 × cos(130°) ≈ -16.06
<em>The horizontal component of the vector, Rₓ ≈ -16.06</em>
The vertical component of the vector, R
=
× sin(θ)
∴ R
= 25 × sin(130°) ≈ 19.15
<em>The vertical component of the vector, R</em>
<em> ≈ 19.15</em>
(The vector, R = Rₓ + R
= Rₓ·i + R
·j
∴
≈ -16.07·i + 19.15j)