The Ammeter is used to detect and measure current or amperage. Also a more common tool now used is a multimeter that detects and measures voltage, current, and resistance.
Any questions please just ask. Thank you.
Chlorine gas or just chlorine?
Answer:
-384.22N
Explanation:
From Coulomb's law;
F= Kq1q2/r^2
Where;
K= constant of Coulomb's law = 9 ×10^9 Nm^2C-2
q1 and q2 = magnitudes of the both charges
r= distance of separation
F= 9 ×10^9 × −7.97×10^−6 × 6.91×10^−6/(0.0359)^2
F= -495.65 × 10^-3/ 1.29 × 10^-3
F= -384.22N
Answer:
Usually, a solution can have several criteria and constraints. Even though all are important, some criteria are more important than others. The same holds true for constraints. But what do you do if it's impossible for a solution to cover every criterion while avoiding every constraint? In cases like this, you can use prioritization. Listing criteria and constraints based on priority shows the relative importance of each. You will need to prioritize the criteria and constraints for each sub-problem so that you can design a solution for each one individually. Prioritization can help you compare two different possible solutions. For example, the criterion that cars travel at 15 mph through the neighborhood might be a higher priority than the constraint that homeowners are only willing to spend $10,000 on this issue. If this is the case, you would want to generate solutions that also follow the priority in mind. All criteria are important, but engineers must sometimes make a trade-off, which is a compromise or change in one or more criteria or constraints so that they can be met at the same time. This is where prioritization comes in handy as it helps determine the trade-offs. A solution that is doing a better job of meeting one criterion may result in not completely meeting another criterion. Prioritization will help you choose which solution to go with.
Explanation:
I got this from quizlet :)
Answer:
The change in gravitational potential energy of the climber-Earth system,
Explanation:
Given that,
Mass of the hiker, m = 85 kg
Time, t = 2 h
Vertical elevation of the climber, h = 540 m
We need to find the change in gravitational potential energy of the climber-Earth system. We know that due to change in position of an object, gravitational potential energy occurs. It is given by :

So, the change in gravitational potential energy of the climber-Earth system is
. Hence, this is the required solution.