pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
Answer:
True.
Explanation:
Yes, analyses of enzymes found in the blood are used as indicators of tissue damage in the heart, liver, muscle etc has occurred. This leakage of enzymes into the bloodstream tells us whether the tissue is damaged or not. Lactate dehydrogenase is a type of enzyme which is used as indicator which is responsible for the interconverts lactate and pyruvate. The concentration of this enzyme in the blood tells us about tissue damage.
Answer:
In a chemical reaction, there is a change in the composition of the substances; in a physical change there is a difference in the appearance, smell, or simple display of a sample of matter without a change in composition.
Explanation:
Equilibrium occurs when the rate of the forward reaction is the same as the rate of the reverse reaction. This doesn't necessarily mean the concentrations or pressure are the same on both sides of the equation, only the rates are the same
Explanation:
Since liquid isopropanol is a polar liquid and water is also a polar solvent. So, when both of them are added together then according to the like dissolves like principle they get dissolved.
At the molecular level, the polar molecules of isopropanol get attracted towards the polar molecules of water at the surface of water.
As a result, water molecules get surrounded by isopropanol. Thus, water molecules enter the solution and evenly spread into the solution.