<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Reducing agents are defined as the agents which help the other substance to get reduced and itself gets oxidized. They undergo oxidation reaction.

For determination of reducing agents, we will look at the oxidation potentials of the substance. Oxidation potentials can be determined by reversing the standard reduction potentials.
For the given options:
- <u>Option a:</u>

This ion cannot be further oxidized because +1 is the most stable oxidation state of silver.
- <u>Option b:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is 0.13 V

- <u>Option c:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is 0.0 V

- <u>Option d:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is -0.80 V

- <u>Option e:</u>

This ion cannot be further oxidized because +2 is the most stable oxidation state of magnesium.
By looking at the standard oxidation potential of the substances, the substance having highest positive
potential will always get oxidized and will undergo oxidation reaction. Thus, considered as strong reducing agent.
From the above values, the correct answer is Option b.
Answer: The correct option is (c). The total pressure doubles.
Solution:
Initially, only 4 moles of oxygen gas were present in the flask.
(
) ( according to Dalton's law of partial pressure)
....(1)
= Total pressure when only oxygen gas was present.
Final total pressure when 4 moles of helium gas were added:

partial pressure of oxygen in the mixture :
Since, the number of moles of oxygen remains the same, the partial pressure of oxygen will also remain the same in the mixture.

= Total pressure of the mixture.
from (1)

On rearranging, we get:

The new total pressure will be twice of initial total pressure.
Answer:
D) the critical point
Explanation:
Point A is the critical point in phase diagram. This is the highest temperature and pressure at which a pure material can exist in vapor/liquid equilibrium. Pretty cool!
The answer is Darcon my friend, have a fantastic day
Answer:
(d)
Explanation:
Carbonyl group can be the placement of kerosene sugar