There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths.
To play a variety of roles in biochemical interactions, we require all of these diverse sorts of linkages. The tensile strength of these linkages varies. In chemistry, we consider the range of strengths between ionic and covalent bonds to be overlapping. This indicates that in water, ionic bonds usually dissociate. As a result, we shall consider these bonds from strongest to weakest in the following order:
Covalent is followed by ionic, hydrogen, and van der Waals.
To know more about 4 different types of bonds, visit;
brainly.com/question/17401243
#SPJ4
Chemical, physical, and biological
are the three types of weathering
Hope this helped!!
<span>As we know that
1 cu cm H2O = 1 mL H2O = 1g H2O
now
Heat of fusion of water = 79.8 cal/g
and
Heat of vaporization of water = 540 cal/g
Atomic weight of water : H=1 O=16 H2O=18
now by calculating and putting values
65.5gH2O x 79.8cal/gH2O x 1gH2O/540cal = 9.68g H2O (steam)
9.68gH2O x 1molH2O/18gH2O x 22.4LH2O/1molH2O = 12.0 L H2O
hope it helps</span>
Air is mainly composed of N2 (78%), O2 (21%) and other trace gases. Now, the total pressure of air is the sum of the partial pressures of the constituent gases. The partial pressure of each gas, for example say O2, can be expressed as:
p(O2) = mole fraction of O2 * P(total, air) ----(1)
Thus, the partial pressure is directly proportional to the total pressure. If we consider a sealed container then, as the temperature of air increases so will its pressure. Based on equation (1) an increase in the pressure of air should also increase the partial pressure of oxygen.