Answer:
The correct answer is "3899.92 N".
Explanation:
The given values are:
Force,

Ratio,

As we know,
Area, 
or,
⇒ 
On substituting the value of "A", we get
⇒ 
⇒ 
On applying cross-multiplication, we get
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
Answer:
One may assume that the planet radiates energy like a blackbody at some temperature according to the Stefan–Boltzmann law. Thermal equilibrium exists when the power supplied by the star is equal to the power emitted by the planet. The temperature at which this balance occurs is the planetary equilibrium temperature.
Explanation:
Answer:
v₁ = 4 [m/s].
Explanation:
This problem can be solved by using the principle of conservation of linear momentum. Where momentum is preserved before and after the missile is fired.

where:
P = linear momentum [kg*m/s]
m = mass [kg]
v = velocity [m/s]

where:
m₁ = mass of the tank = 500 [kg]
v₁ = velocity of the tank after firing the missile [m/s]
m₂ = mass of the missile = 20 [kg]
v₂ = velocity of the missile after firing = 100 [m/s]
![(500*v_{1})=(20*100)\\v_{1}=2000/500\\v_{1}=4[m/s]](https://tex.z-dn.net/?f=%28500%2Av_%7B1%7D%29%3D%2820%2A100%29%5C%5Cv_%7B1%7D%3D2000%2F500%5C%5Cv_%7B1%7D%3D4%5Bm%2Fs%5D)
<span>They are emitted by the unstable nuclei of certain atoms.
That's all I could find out; Sorry I couldn't be more of an help.</span>
The water formed on the surface of the water evaporation loss (evaporation), consisting of plant transpiration water loss (transpiration) is called. Soil near the plant and the resulting water loss is called by evapotranspiration.