Answer:
(c) the supplements of congruent angles are congruent.
Step-by-step explanation:
Since JKL and JLK are respectively the supplements of angles 3 and 4, we can use the justification
(c) the supplements of congruent angles are congruent.
 
        
                    
             
        
        
        
Answer:
z(max) =  256000  Php
x₁ = 10
x₂ = 110
Step-by-step explanation:
Jogging pants design                Selling Price       Cost     
  weekly production
  Design A    x₁                                     2500            1750
   Design B    x₂                                    2100            1200       
1. z ( function is : )
z = 2500*x₁  +  2100*x₂       to maximize
First constraint weekly production
  x₁    +   x₂    ≤  120
Second constraint Budget
1750*x₁  +  1200*x₂   ≤   150000      
Then the model is
z = 2500*x₁  +  2100*x₂       to maximize
Subject to
  x₁    +   x₂    ≤  120
1750*x₁  +  1200*x₂   ≤   150000   
General constraints   x₁  ≥  0           x₂   ≥ 0            both integers
First table
z           x₁           x₂        s₁       s₂      cte
1       -2500      -2100    0       0         0
0          1              1          1        0  = 120
0      1750         1200     0       1   = 150000
Using AtoZmath online solver and after 6 iterations the solution is:
z(max) =  256000  Php
x₁ = 10
x₂ = 110
 
        
             
        
        
        
Answer:
4 1/2
Step-by-step explanation:
 
        
             
        
        
        
Answer:
18.85 cm²
Step-by-step explanation:
The formula to find the area of a sector = θ/360 × πr²
We are given:
θ = Angle of the sector = 135°
Radius = Diameter/2 
Diameter = 8cm , Hence Radius = 8cm/2 = 4cm
Hence,
Area of a sector = 135/360 × π ×(4cm)²
= 18.849555922 cm²
Approximately to the nearest hundredth = 18.85 cm²
Therefore, the area of the sector is 18.85 cm²