1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
3 years ago
7

A piston–cylinder assembly contains 5.0 kg of air, initially at 2.0 bar, 30 oF. The air undergoes a process to a state where the

pressure is 1.0 bar, during which the pressure–volume relationship is pV = constant. Assume ideal gas behavior for the air. Determine the work and heat transfer, in kJ.
Physics
1 answer:
vladimir2022 [97]3 years ago
4 0

Answer:

The work and heat transfer for this process is = 270.588 kJ

Explanation:

Take properties of air from an ideal gas table.  R = 0.287 kJ/kg-k

The Pressure-Volume relation is <em>PV</em> = <em>C</em>

<em>T = C </em> for isothermal process

Calculating for the work done in isothermal process

<em>W</em> = <em>P</em>₁<em>V</em>₁ ln[\frac{P_{1} }{P_{2} }]

   = <em>mRT</em>₁ln[\frac{P_{1} }{P_{2} }]      [∵<em>pV</em> = <em>mRT</em>]

   = (5) (0.287) (272.039) ln[\frac{2.0}{1.0}]

   = 270.588 kJ

Since the process is isothermal, Internal energy change is zero

Δ<em>U</em> = mc_{v}(T_{2}  - T_{1} ) = 0

From 1st law of thermodynamics

Q = Δ<em>U  </em>+ <em>W</em>

   = 0 + 270.588

   = 270.588 kJ

You might be interested in
Find the fundamental frequency and the next three frequencies that could cause standing-wave patterns on a string that is 30.0 m
maksim [4K]

Answer:

0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz

Explanation:

The fundamental frequency of a standing wave on a string is given by

f=\frac{1}{2L}\sqrt{\frac{T}{\mu}}

where

L is the length of the string

T is the tension in the string

\mu is the mass per unit length

For the string in the problem,

L = 30.0 m

\mu=9.00\cdot 10^{-3} kg/m

T = 20.0 N

Substituting into the equation, we find the fundamental frequency:

f=\frac{1}{2(30.0)}\sqrt{\frac{20.0}{(9.00\cdot 10^{-3}}}=0.786 Hz

The next frequencies (harmonics) are given by

f_n = nf

with n being an integer number and f being the fundamental frequency.

So we get:

f_2 = 2 (0.786 Hz)=1.572 Hz

f_3 = 3 (0.786 Hz)=2.358 Hz

f_4 = 4 (0.786 Hz)=3.144 Hz

6 0
3 years ago
An object in the shape of a thin ring has radius a and mass M. A uniform sphere with mass m and radius R is placed with its cent
madreJ [45]

Answer:

F = GMmx/[√(a² + x²)]³

Explanation:

The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is

dF = GmdM/L²

Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.

So, the horizontal components add from two symmetrically opposite mass elements dM,

Thus, the horizontal component of the force is

dF' = dFcosФ where Ф is the angle between L and the x axis

dF' = GmdMcosФ/L²

L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.

L = √(a² + x²)

cosФ = x/L

dF' = GmdMcosФ/L²

dF' = GmdMx/L³

dF' = GmdMx/[√(a² + x²)]³

Integrating both sides we have

∫dF' = ∫GmdMx/[√(a² + x²)]³

∫dF' = Gm∫dMx/[√(a² + x²)]³    ∫dM = M

F = GmMx/[√(a² + x²)]³  

F = GMmx/[√(a² + x²)]³

So, the force due to the sphere of mass m is

F = GMmx/[√(a² + x²)]³

3 0
3 years ago
How are acceleration and speed related​
Gre4nikov [31]

Answer:

Acceleration is the rate of change of velocity. Usually, acceleration means the speed is changing, but not always. When an object moves in a circular path at a constant speed, it is still accelerating, because the direction of its velocity is changing. Comment on robshowsides's post “Speed is the magnitude of velocity.

Explanation:

hope it helped tee hee

6 0
3 years ago
Read 2 more answers
If for every action force an equal and opposite reaction force exlsts, how can anything ever be accelerated?
klasskru [66]

Answer:

B

Explanation:

The net force is the force between action and reaction and when this forces are not the same an acceleration is spurred.

3 0
2 years ago
A well-thrown ball is caught in a well-padded mitt. If the deceleration of the ball is 2.10×104 m/s2 , and 1.85 ms (1 ms = 10−3
ankoles [38]

Answer:

u = - 38.85 m/s^-1

Explanation:

given data:

acceleration = 2.10*10^4 m/s^2

time = 1.85*10^{-3} s

final velocity = 0 m/s

from equation of motion we have following relation

v = u +at

0 =  u + 2.10*10^4 *1.85*10^{-3}

0 = u + (21 *1.85)

0 = u + 38.85

u = - 38.85 m/s^-1

negative sign indicate that the ball bounce in opposite directon

4 0
2 years ago
Other questions:
  • Amelia is driving her car down a residential street. She approaches a stop sign and applies her brakes. It takes the car a few s
    15·1 answer
  • An interference pattern is produced by light with a wavelength 590 nm from a distant source incident on two identical parallel s
    13·1 answer
  • A positive test charge q is released from rest at distance r away from a charge of Q and a distance 2r away from a charge of 2Q.
    8·1 answer
  • 4. Which of the following is equivalent to 800 cm?
    8·1 answer
  • Which of these is an example of force?
    14·1 answer
  • Cual es la respuesta a esta p'regunta.
    11·1 answer
  • true or false when taking a handoff you need to make sure you you reach out with your hands and grab the ball ​
    7·1 answer
  • In any vector space au=bu implies a=b ? Trou or False​
    12·2 answers
  • Kawas 200 osebanywhes he remembered he had to return some books they​
    14·1 answer
  • Could someone please please help meee
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!